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DISCLAIMER

Developers and distributors assume no responsibility for the use of MIDAS Family Program 

(midas Civil, midas FEA, midas FX+, midas Gen, midas Drawing, midas SDS, midas GTS, 

SoilWorks, midas NFX, midas Drawing, midas nGen ; here in after referred to as “MIDAS 

package”) or for the accuracy or validity of any results obtained from the MIDAS package.

Developers and distributors shall not be liable for loss of profit, loss of business, or financial loss 

which may be caused directly or indirectly by the MIDAS package, when used for any purpose or 

use, due to any defect or deficiency therein. Accordingly, the user is encouraged to fully 

understand the bases of the program and become familiar with the users manuals. The user shall 

also independently verify the results produced by the program.



INDEX
Chapter1. Introduction
Outline 
System of Units 
File Format and System 
Notation 

Chapter2. Nodes, DOFs, and Coordinate
Nodes, DOFs, and Coordinate 

System 
Coordinate System 

Chapter3. Elements
Outline 
Finite Element Formulation 
Shape Functions 
Supplementary Information 

Regarding Locking Phenomena 
Continuum Elements 
Structural Elements
Special Use Element 
Geometric Stiffness 
Element Examples 

5
7
8

10

12
12
13

17
19
21
26
26
35
42
65
70
72



Chapter4. Material
Properties of Elastic materials 
Material Examples

Chapter5. Algorithm
System of Equations Solver
Eigenvalue Extraction
Effective Mass and Mode
Dynamic Response Analysis
Nonlinear Finite Element Method
P-Delta Effect
Nonlinear Dynamic Response
Moving Crane Analysis

Chapter6. Load/Constraint
Loads
Boundary/Restraint Conditions

111
115

119
124
171
177
221
231
239
243

253
258



ANALYSIS REFERENCE Chapter 1. Introduction

Section 1. Outline | 1

Outline

The midas nGen and Foundation programs are designed for developing models and conducting detailed 

analysis of structural systems. It operates based on finite element analysis code written in C++. The 

programs provide a variety of analytical capabilities such as static analysis, dynamic analysis, and crane 

moving analysis (see Table 1.1.1). In order to efficiently conduct such a wide range of analyses, midas 

nGen includes a diverse and specialized catalog of elements for accurate modeling of structural 

components.

Analysis Types

Linear static analysis

Nonlinear static analysis

Eigenvalue analysis

Response spectrum analysis

Linear buckling analysis

P-delta analysis

Crane moving load analysis

Linear time history(modal/direct) analysis

Frequency response(modal/direct) analysis

Nonlinear time history analysis

For the purpose of providing the user with the knowledge required to most efficiently make use of the 

midas nGen or Foundation software programs, this manual provides detailed information regarding the 

programs’ theoretical and technical details.

To improve readability and accessibility, the manual does not include content focused on educating the 

reader with engineering fundamentals (such concepts are often explained in detail in various other 

engineering publications) or technical content that is unnecessarily theoretical or esoteric for the average 

user.

Section 1

Table 1.1.1 Analysis 

capabilities of midas nGen
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The manual is divided into the following chapters:

· Chapter 2: Nodes and Coordinate Systems

· Chapter 3: Element Modeling

· Chapter 4: Material Models for Detailed Analysis

· Chapter 5: Analysis Algorithms

· Chapter 6: Loads and Boundary Conditions

This manual provides explanations for all capabilities of midas nGen and Foundation, but the available 

tools may vary depending on the specific version of the software.
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Section 2 System of Units

Analysis models require the user to define numerical quantities such as sizes and material properties. 

Such definitions are based on a particular system of units. Midas nGen allows for easy unit conversion 

for units of force and length, and the user may also switch unit systems during the model definition 

process. Before beginning analysis, it is recommended that the model properties be unified by a single 

system of units—either the English or SI system of units.

Quantity English SI

Length, position, displacement Inch meter

Modulus of Elasticity lbf/inch2 Newton/meter2

Moment inch-lbf Newton-meter

Force lbf Newton

Mass lbf-sec2/inch kilogram

Time second second

Stress lbf/inch2 Newton/meter2

Although the software conducts analyses using the pre-specified system of units, the analysis results 

may be converted to a different system in the post-processing stage.

Section 2

Table 1.2.1 Units used in the 

English/SI systems of units
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File Format and System

Throughout the finite element analysis procedure, the program will create and save several different files. 

Some temporary files may also appear and disappear depending on the analysis step. The files that will 

be used and created by the software, along with the respective file type and contents, are shown in 

Table 1.3.1.

File Name Type Contents

ModelName.mpb Binary Model

ModelName_AnalysisName.mec ASCII Analysis input

ModelName_AnalysisName.log ASCII Analysis log

ModelName_AnalysisName.out ASCII Analysis results

ModelName_AnalysisName_usr.out ASCII Time History analysis results

ModelName_AnalysisName.drct Binary Distributed loading information

ModelName_AnalysisName.nfxp Binary Analysis results (for post processing)

There are two analysis result file types: .out files, which are ASCII type and .nfxp files, which are binary. 

Generally speaking, .nfxp files are used for post-processing and interpreting the data thereafter. 

ASCII .out files may contain the same contents as the .nfxp files. In addition, eigenvalue analysis results 

(eigenvalues, mass participation factors, etc) are only included in the .out files.

In the case of moving crane analysis, the following files are also created and used by the program. 

Except for influence line analysis results, moving crane analysis results are included in .nfxp files 

(similar to the regular analysis results).

File Name Type Contents

ModelName_AnalysisName.CRN ASCII Moving analysis input file

ModelName_AnalysisName_#.blk Binary Influence line analysis results

Section 3

Table 1.3.1 Primary output 

files of midas nGen
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ModelName_AnalysisName.CLD Binary Crane 

Table 1.3.2 shows additional temporary files that are created during the analysis procedure. 

File Name Usage/Contents

InputName.DASM#.bin Created for all analysis types, contains FEM-related information

InputName.FACT#.bin#
Created when using the multi-frontal solver, contains matrix 

information

InputName.EIGS#.bin#
Created when conducting eigenvalue analysis, contains Lanczos 

iterative methods data

InputName.MSTO#.bin Internally recorded, contains large matrix and vector data

These temporary files are created in the scratch folder whose default directory is the same as the model 

file folder.

Table 1.3.2 Temporary files 

that are created during 

analysis



Chapter 1. IntroductionANALYSIS REFERENCE

6 | Section 4. Notation

Notation

This manual uses both matrix notation and component notation. Matrix notation is especially 

convenient for tensors, and thus, if possible, the manual defaults to using matrix notation.

For introducing theory, it is important to clarify the notation for scalars, vectors, second-order tensors 

or matrices, and fourth-order tensors. The notation to be used in this manual is shown in Table 1.4.1.

Quantity Notation

Scalar u

Vector u , { }*

Second-order Tensor, Matrix A , [ ]*

Fourth-order Tensor C

The boldface is used for both vectors and tensors, so the two may be differentiated based on context. 

Matrix notation is particularly effective for expressing physical meaning or relative physical quantities. 

However, there are expressions that are either difficult to write in matrix notation or represent 

component-by-component operations. In such cases, it is more efficient to resort to component 

notation.

Component notation is based on a specific coordinate system, which is derived from the base vector.

The base vector is specified as ie , ( 1,2,3)i = in 3-dimensional space, and the base vectors may not be 

orthogonal to one another. Using the base vector, the vector u may be expressed as follows:

1 2 3
1 2 3u u u= + +u e e e     (1.4.1)

ie : Base vector

ju : Component scalar

Section 4

Table 1.4.1 Matrix Notation
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In component notation, the precise meaning of the subscript i is the covariant base vector or 

component, and the superscript j refers to the contravariant base vector or component. Generally, for 

orthonormal coordinate systems, the two are equal and thus do not require differentiation.

When using component notation, it is convenient to use summation convention for summing over 

multiple indices, as shown below:

i
iu=u e

(1.4.2)

Similarly, the second- and fourth-order tensors may be expressed in component notation as shown 

below:

ij

i jA=A e e
, 

ijkl

i j k lC=C e e e e
(1.4.3)

This manual uses summation convention, unless otherwise noted.
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Nodes, DOFs, and Coordinate 

System

Nodes and elements define the size and shape of a finite element model, and represent the starting point 

for all analyses. Models defined by nodes and elements are the equivalent of expressing physical 

phenomena using matrix equations. The unknown variables of such equations are physical quantities 

such as displacement and rotation, and are called degrees of freedom.

A simple structural analysis example may involve, at each node, three displacement-based and three 

rotation-based degrees of freedom. These six degrees of freedom are shown in the figure below.

Each degree of freedom is typically expressed using the notations shown below:

1 1DOF 1 T u= = ,  2 2DOF 2 T u= = ,  3 3DOF 3 T u= =

2u

1u

3u
1q

3q

2q

Section 1

Figure 2.1.1 

Displacement and rotational 

degrees of freedom for an 

orthogonal coordinate system
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1 1DOF 4 R q= = ,  2 2DOF 5 R q= = ,  3 3DOF 6 R q= =

Each node’s local coordinate system describes its direction of motion and is defined as the nodal 

displacement coordinate system. The degrees of freedom mentioned above follow the direction of the 

coordinate systems assigned to all the nodes. All nodes in a model are programmed to have their 

directions of motion based on the global coordinate system.

Coordinate System

To create a suitable model and conduct proper analyses using FEM techniques for a given problem, 

access to a diverse range of coordinate systems is essential. For example, a coordinate system is required 

for the aforementioned case of defining a direction of motion for each node or for defining the axial 

direction of a structural member. Additionally, a particular coordinate system may be defined for 

extracting a resulting value. Midas nGen allows for the use of either a rectangular coordinate system or 

a cylindrical coordinate system.

Section 2

Figure 2.2.1 Rectangular 

coordinate system and 

cylindrical coordinate system
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For example, if the direction of motion for a particular node is defined by a cylindrical coordinate 

system, the degrees of freedom are as follows: 

  DOF 1 = translation in r -direction

  DOF 2 = translation in q -direction

  DOF 3 = translation in z -direction

  DOF 4 = rotation in r -direction

  DOF 5 = rotation in q -direction

  DOF 6 = rotation in z -direction

Origin

z

y

x

Rectangular
coordinate system

z

q

r

Cylindrical
coordinate system

Origin



The program uses the following coordinate systems for modeling and analysis. 

Coordinate System Use/Description

GCS : global coordinate system
Unites the entire model, rectangular coordinate 

system

NDCS : nodal displacement coordinate 

system

Describes each node’s direction of motion, 

rectangular/cylindrical coordinate system

ECS : element coordinate system
Defined by the node positions of each element, 

rectangular coordinate system

MCS : material coordinate system

Dictates the material directionality being applied to 

the elements, rectangular/cylindrical coordinate 

system

ERCS : element result coordinate system
Used for outputting element analysis results, 

rectangular/cylindrical coordinate system

EFCS : element formulation coordinate 

system

Used in finite element formulation, equivalent to 

the global coordinate system and the element 

coordinate system

Among these, the element formulation coordinate system is used in the FEM solver, and the material 

coordinate system is fixed to the global coordinate system. The material coordinate system consequently 

does not alter the user’s experience with midas nGen, but is helpful for understanding the information 

presented in this manual. In addition, element result coordinate system may influence the interpretation 

of analysis results. Element, material, and element result coordinate systems are explained with detail in 

Chapter 3.

Table 2.2.1 Main coordinate 

systems used by midas nGen

Figure 2.2.2 Various 

coordinate systems used by 

midas nGen
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Outline

Midas nGen includes access to a diverse element library that is designed for geometric modeling. 

Through appropriate use of these elements, users may conduct a wide range of analyses including linear 

or nonlinear analysis and moving crane analysis. Understanding the characteristics of each element type 

is crucial for accurate finite element analysis. To aid in this effort, page 3 introduces the theoretical 

background behind the various finite element techniques that is used in midas nGen.

The following paragraphs introduce the element types available in midas nGen, and their respective 

shapes, forms, and other characteristics.

Scalar Element

Scalar elements have a single node, and its strain energy and kinetic energy is based on the motion of 

this node relative to the ground point. These energy quantities may be defined based on two nodes

instead, but the quantities do not use the distance between these two nodes or other such geometrical 

information. Scalar elements include point springs, dampers, and mass. Point springs and dampers are 

primarily used to incorporate elasticity or damping properties of structural boundaries, whereas point 

masses are mainly used to incorporate the mass of nonstructural components.

1-Dimensional Form Element

This element is linear and defined by two nodes, and makes use of the distance between the two nodes 

and other geometrical information. Trusses, beams, and elastic links are elements that are included in 

this category. Trusses are primarily used for representing braces, and beam elements may represent 

either beam and column members. Elastic links are nonstructural components and mainly used for 

representing the rigidity of equipment connections.

2-Dimensional Form Element

This element may be triangular or rectangular, and may consist of three to four nodes. These 2-

dimensional form elements may be curved, unlike the linear 1-dimensional form eleements. Shell 

Section 1
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elements are an example of 2-dimensional form elements. Shells are often used to model slabs, walls,

facades, or pipes.

3-Dimensional Form Element

The shape of a 3-dimensional form element may be a tetrahedron, pentahedron, or hexahedron, and 

will be defined by four to six nodes. Pentahedronal elements may taken on wedge or pyramid shapes. 

Solid elements are included in the class of 3-dimensional form elements, and are generally used for 

modeling components with nonzero volume, such as equipment or foundation.

Rigid link/interpolation Elements

These elements may define rigid body motion between nodes or relative motion via interpolation, and 

are similar to multi-point constraints. Rigid link elements and interpolation elements are included in 

this category. Usually these elements are used to define equipment or plant connections.
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Finite Element Formulation

When the variational form of the stress-strain relationship is applied as a constraint condition to the

principle of virtual work originating from stress, the Hu-Washizu variational principle1, 2 is obtained,

and it may be expressed as the equation shown below:

( ) ( ( ) ) ( )T T T
extG dd d d d

W
= Ñ + - + Ñ - Wò u σ ε σ ε σ σ u ε     (3.2.1)

extGd : Virtual work due to external forc

u : Displacement

σ : Stress

ε : Strain

( )σ ε : Stress derived from strain

Ñ : Strain-displacement relational operator

The above equation is the most typical expression for simultaneously capturing equilibrium, constitutive 

relationships, and compatibility conditions. Assuming that the relationship between strain and stress 

always satisfies the constitutive relationship, the Hellinger-Reissner principle3, 4 is obtained:

( ) ( ( ))T T
extG dd d d

W
= Ñ + Ñ - Wò u σ σ u ε σ   (3.2.2)

( )ε σ : Strain derived from stress

                                                            
1 Hu, H.C., “On some variational principles in the theory of elasticity and the theory of plasticity,”

Scintia Sinica, Vol. 4, 1955.

2 Washizu, K., On the Variational Principles of Elasticity, Aeroelastic and Structural Research 

Laboratory, MIT, Technical Report, 1955.

3 Hellinger, E., “Der allgemeine Ansatz der Mechanik der Kontinua,” Encyclopadie der 

Mathernafischen Wissenschaften, Vol. 4, 1914.

4 Reissner, E., “On a variational theorem in elasticity,” Journal of Mathematical Physics, Vol. 29, 1950.

Section 2



ANALYSIS REFERENCE Chapter 3. Elements

13 | Section 2. Finite Element Formulation

Moreover, with the assumption that the relationship between ε and Ñu always satisfies compatibility 

conditions, then the general principle of virtual work is obtained:

( ) ( )T
extG dd d

W
= Ñ Wò u σ u     (3.2.3)

To apply finite element methods to the principle of virtual work, consider the localization of a region of 

integration as a single element. Within an element, the displacement u can be interpolated using a 

shape function as shown below:

   h e=u Nd               (3.2.4)

N : Shape Function

ed : Element node degree of freedom

Then, by utilizing the displacement-strain relationship h h e= Ñ =ε u Bd , the principle of virtual work as 

applied to the entire element may be expressed as follows:

e

T T T T
extG dd d d d

W

é ù= = W =
ê úë ûå òd F d B DB d d Kd                        (3.2.5)

D : Stress-strain relational matrix

In linear analysis, the complete stiffness matrix K is independent of the vector d containing all degrees 

of freedom. The element stiffness matrix eK is expressed as:

                           
e

e T d
W

= WòK B DB (3.2.6)

The above equation is appropriate for analysis of elastic structures that experience infinitesimal 

displacement but, using the same principles, may be applied to nonlinear analysis as well.
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Shape Functions

The definition of an element is derived from the assumed displacement field derived from shape 

functions. The indices used in this section do not follow summation convention 1-, 2-, and 3-

dimensional shape functions are expressed using the natural coordinate system ( , ,x h z ).

2-Node Shape Function

1

2
i

iN
x x+

= , 1 1x- £ £

1 21, 1x x= - =

2-Node Hermite Shape Function

2 3
1 1 3 2N x x= - + , 2 3

2 2N l l lx x x= - + , 2 3
3 3 2N x x= - , 2 3

4N l lx x= - + , 0 1x£ £

l : Element length

3-Node Triangle

1 1N x h= - - , 2N x= , 3N h=

Section 3

3.1 
1-Dimensional
Shapes

3.2
2-Dimensional Shapes

Figure 3.3.1 Node locations 

and natural coordinate system

for a triangle
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4-Node Rectangle

( )( )
1

1 1
4

i i iN x x hh= + +

4-Node Tetrahedron

1 1N x h z= - - - , 2N x= , 3N h= , 3N z=

x

h

(1, 0)(0, 0)

(0, 1)

1
2

3

(-1, -1)

x

h

(1, 1)

1 2

34

Figure 3.3.2 Node locations 

and natural coordinate system 

for a rectangle

3.3
3-Dimensional Shapes

Figure 3.3.3 Node locations 

and natural coordinate system 

for a tetrahedron
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6-Node Pentahedron

1
(1 )(1 )

2
i iN x h z z= - - + , 1, 4i =

1
(1 )

2
i iN x z z= + , 2,5i =

1
(1 )

2
i iN h z z= + , 3, 6i =

h

z

x
(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 0, 0)

1

2

4

3

h

z

x

(1, 0, -1)

(0, 0, 1)

(0, 1, -1)

(0, 0, 0)

1

2

3

4

5

6

Figure 3.3.4 Node locations 

and natural coordinate system 

for a pentahedron (wedge)
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A 5-node pentahedron takes on the shape of a pyramid, and degenerated shape function (derived from 

the merging of multiple nodes) are widely used. However, because the shape function has numerical 

integration issues5, the following alternative is used in midas nGen.

5-Node Pentahedron

1
{(1 )(1 ) }

4 1
i i i i iN

xhz
x x hh z xh

z
= + + - +

-
, 1, 2,3, 4i =

5N z=

8-Node Hexahedron

1
(1 )(1 )(1 )

8
i i i iN x x hh z z= + + + , 1, 2,3, ...,8i =

To apply these shape functions in the formulation procedure mentioned in Section 3.1, numerical 

integration methods are required. Numerical integration is required for calculating the stiffness matrix, 

                                                            

5 Bedrosian, G., “Shape functions and integration formulas for three-dimensional finite element 

analysis”, International Journal for Numerical Methods in Engineering, Vol. 35, 1992

h

x(0, 0, 0)

1 2

34

5

9

z (1, 1, 0)

(0, 0, 1)

(-1, -1, 0)

5

78

6

1

34

2

h

x

z

Figure 3.3.5 Node locations 

and natural coordinate system 

for a pentahedron (pyramid)

Figure 3.3.6 Node locations 

and natural coordinate system 

for a hexahedronal element
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mass matrix, load vector, and internal force, among other quantities. Midas nGen uses two integration 

methods: Gaussian quadrature integration and Lobatto quadrature integration.

Numerical 

Integration Method
Matrix Type Applicable Elements

Gaussian 

quadrature

Stiffness 

Matrix

Structural 

elements

All elements that require numerical 

integration

Mass 

Matrix

Consistent mass All elements

Lumped mass All elements that require diagonal scaling6

Lobatto quadrature

Stiffness 

Matrix

Structural 

elements
-

Mass 

Matrix

Consistent mass -

Lumped mass

3-node triangle, 4-node rectangle, 4-node 

tetrahedron, 6-node pentahedron, 8-node 

hexahedron

                                                            
6 Hinton, E., Tock, T. and Zienkiewicz, O.C., “A Note on mass lumping and related processes in the 

finite element method,” Earthquake Engineering and Structural Dynamics, Vol. 4, 1976

-1.0 1.00.0

-1.0 1.0
1

3
-

1

3

-1.0 1.00.0

Gauss Lobatto

-1.0 1.00.0

-1.0 1.0
1

3
-

1

3

-1.0 1.00.00.6- 0.6

Gauss Qudarature

Table 3.3.1 Types and uses of 

numerical integration methods

Figure 3.3.8 Points of 

integration for different 

numerical integration methods
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Supplementary Information 

Regarding Locking Phenomena 

Finite elements based on assumed displacement methods are known to yield solutions with very low 

accuracy. The reason for this is due to locking phenomena. Resolving locking phenomena and thus 

improving the accuracy of the solution is of utmost importance to a finite element software. Midas 

nGen improves the precision of each element through the following methods. Each method is not used 

independently of one another; multiple methods may be combined depending on the element.

Mixed-hybrid formulation combines variation theory and displacement, and may be categorized very 

differently depending on the assumed component. Midas nGen uses the assumed stress method and the 

mixed-hybrid u-p method.

According to the Hellinger-Reissner principle, displacement and stress may be expressed as unknown

variables in the variational equation shown below:

1( ) ( )T T
extG dd d d -

W
= Ñ + Ñ - Wò u σ σ u D σ     (3.4.1)

For the shape function for a random element, the displacement may be assumed to be of the form 
h e=u Nd and the stress may be assumed to be of the form e=σ Pβ . With these substitutions, the above 

equation’s right hand side may be written as:

( )eT T e eT e ed d+ -d Q β β Qd Pβ                                                     (3.4.2)

Section 4

4.1 
Mixed-hybrid 

formulation



Chapter 3. ElementsANALYSIS REFERENCE

Section 5. Continuum Elements | 20

Here,

             
e

T

ed
W

= WòQ P B                                                               (3.4.3)

  1

e

T

ed-

W
= WòP P D P                                                            (3.4.4)

eβ is not assumed to be continuous between elements, and thus may be eliminated within elements as 

shown below:

1e e-=β P Qd                                                                  (3.4.5)

If the above is substituted into Equation 3.4.2, then the element stiffness is as follows:

    1e T -=K Q P Q                  (3.4.6)

The function P presumes the stress of an element, and thus the appropriate selection of P is the most 

important decision in determining the performance of an element. For example, a shell element’s in-

plane stress7 is assumed to be as follows:

1 0 0 0
ˆ 0 1 0 0

0 0 1 0 0

xx

yy

xy

s h

s x

t

ì ü é ù
ï ï ê ú= = = =í ý ê ú
ï ï ê úë ûî þ

σ Pβ TPβ T β        (3.4.7)

Here, T is the coordinate transformation matrix of the contravariant of the stress component:

2 2
11 21 11 21

2 2
12 22 12 22

11 12 21 22 11 22 12 21

2

ˆ 2

j j j j

j j j j

j j j j j j j j

xx

hh

xh

s

s

t

é ù ì ü
ê ú ï ï

= = í ýê ú
ï ïê ú+ î þë û

σ Tσ        (3.4.8)

                                                            

7 Pian, T.H.H. and Sumihara, K., “Rational approach for assumed stress finite elements,” International 

Journal for Numerical Methods in Engineering, Vol. 20, 1984
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Each component of the transformation matrix is calculated using the Jacobian, and typically uses the 

values at the middle of the element.

11 12

21 22

x y

j j

j jx y

x x

h h

¶ ¶é ù
ê ú¶ ¶ é ù
ê ú= = ê ú¶ ¶ê ú ë û
ê ú¶ ¶ë û

J          (3.4.9)

Hybrid u-p method assumes all components of stress σ , but only for hydrostatic stress or pressure p ; 

therefore, it has traditionaly been applied to locking phenomena due to incompressible materials. The 

stress tensor is decomposed into the deviatoric stress and pressure, and applies the Hu-Washizu

variational principle.

( )

dev p

p Ktr

= -

=

σ σ I

ε
       (3.4.10)

devσ : Deviatoric Stress

K : Bulk Modulus

( )tr ε : Trace of Strain

Assumed natural strain method does not stray too far from classical displacement assumption method

and thus is widely known as a method that can be easily applied in practice. In particular, this method 

is applied frequently to shell element analysis8, 9, 10. In principle, Hu-Washizu principle serves as its 

base, but when being applied to finite element methods it may best be categorized as a type of B-bar 

method11.

                                                            
8  

MacNeal, R.H., “Derivation of element stiffness matrices by assumed strain distribution,” Nuclear 

Engineering and Design, Vol. 70, 1982
9 
Hughes, T.J.R. and Tezduyar, T.E., “Finite elements based upon Mindlin plate theory with particular reference 

to the four-node bilinear isoparametric element,” Journal of Applied Mechanics, Vol. 48, 1981
10 

Bathe, K.J. and Dvorkin, E.N., “A formulation of general shell elements-The use of mixed interpolation of 

tensorial components,” International Journal for Numerical Methods in Engineering, Vol. 22, 1986
11 Hughe, T. J. R., The Finite Element Method, Prentice Hall Inc., Englewood Cliffs, NJ, 1987

4.2
ANS: Assumed Natural 

Strain
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For example, consider the application of the assumed natural strain method to the the lateral shear 

strain of the four-node shell element shown above. Of the natural coordinate system components, Zxg

is known at locations B and D, and Zhg is known at locations A and C. Using these values, the strain at 

the points of integration may be interpolated as follows:

1 1
(1 ) (1 )

2 2
B D

z z zx x xg h g h g= - + + (3.4.11)

1 1
(1 ) (1 )

2 2
A C

z z zh h hg x g x g= - + + (3.4.12)

Strain in the natural coordinate system may be transformed into space coordinates by using the 

following transformations:

xz zT

yz z

x

h

g g

g g
-ì ü ì üï ï ï ï

= =í ý í ý
ï ïï ï î þî þ

γ T                          (3.4.13)

Here, T is a coordinate transformation matrix of the covariant component, as shown below:

11 21

12 22

j j

j j

é ù
= ê ú
ë û

T      (3.4.14)

Each component of the transformation matrix is calculated using the Jacobian. The assumed natural 

strain method only modifies the strain by using equations 3.4.11-13. Essentially, it is the equivalent 

of modifying the B matrix in the assumed displacement method, as shown below.

x

h

1 2

34

A

B

C

D

Local transverse direction

x

x

x

x

Integration
point

Figure 3.4.1 Assumed lateral 

shear strain
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e= Ñ =ε u Bd      (3.4.15)

The enhanced assumed strain method is very similar to the incompatible modes12 method (and also 

yields the same results), but in contrast its theoretical base is the Hu-Washizu principle and begins 

from the assumed strains instead of assumed displacements. The following Hu-Washizu variational 

equation assumes three unknown varialbes: displacement, strain, stress:

( ) ( ) ( )T T T
extG dd d d d

W
= Ñ + - + Ñ - Wò u σ ε Dε σ σ u ε        (3.4.16)

Strain ε is taken to be the sum of compatible strain (calculated from displacement) and incompatible 

strain (enhanced assumed strain).

= Ñ +ε u ε       (3.4.17)

If the above is substituted into Equation 3.4.16 and rearranged, the result is as follows:

( ) ( ) ( )T T T
extG dd d d d

W
= Ñ Ñ + + Ñ + - - Wò u D u ε ε D u Dε σ σ ε          (3.4.18)

With the assumption that stress distribution and incompatible strains are orthogonal within the element, 

then the equation may be modified to become a function of only displacement and enhanced assumed 

strain, as shown below:

( ) ( )T T
extG dd d d

W
= Ñ Ñ + + Ñ + Wò uD u ε ε D u Dε   (3.4.19)

For the shape function of a random element, if the displacement is substituted with h e=u Nd and the 

enhanced strain is assumed to be of the form e=ε Gα , the right hand side of the above equation can be 

written as follows:

                                                            
12 

Taylor, R.L., Beresford, P.J. and Wilson, E.L., “A non-conforming element for stress analysis,” International 

Journal for Numerical Methods in Engineering, Vol. 10, 1976

4.3
EAS: Enhanced 

assumed strain
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eT e e eT e e eT e e eT e e
dd d da a aad d d d+ + +d K d d K α α K d α K α     (3.4.20)

Here,
e
ddK

is the classical element stiffness matrix based on assumed displacement, and 
e
daK

and  
e
aaK

may be written as:

e

e T

d eda W
= WòK B DG                    (3.4.21)

e

e T

edaa W
= WòK G DG                    (3.4.22)

eα is assumed to be discontinuous between elements and there is no external work towards edα . Thus, 

within the element, it may be elimited as:

   1e e e e
daa a

-= -α K K d     (3.4.23)

If the above is substituted into equation 3.4.20, then the element stiffness matrix is:

1e e e e e
dd d da aa a

-= -K K K K K     (3.4.24)

Appropriate selection of G , which assumes enhanced strain values, is the most important factor in 

determining element performance.

Strain that is calculated at points of integration with low orders of integration is known to be more 

precise relative to those at other locations. Moreover, the locking phenomena in elements typically 

occurs due to unnecessary orders of integration for strain calculations, and can be resolved through 

reduced integration methods. However, depending on the case, reduced integration can worsen the 

numerical properties of the stiffness matrices and may trigger spurious zero energy modes or hourglass 

modes.

4.4
Reduced Integration 

Methods
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Generally, 3-dimensional low order element strain may be approximated as follows:

0 1( ( , , )) ex h z=Ñ » +ε u B B d     (3.4.25)

Resolving locking phenomena by using reduced integration is the equivalent of exclusively using 0B ,

which is equal to evaluating the strain at the element’s midpoint. However, when using the strain at the 

midpoint of the element, problems occur when failing the patch test (which connects equal strain 

values). Thus, to resolve this issue, it is normal to substitute 0B with 0B 13. 0B , which corresponds to 

average strain, satisfies the following equation:

0

1

e
e

e

d
V W

= WòB B         (3.4.26)

Here, eV represents element volume. If 0B is exclusively used, because it corresponds to average strain 

the strain energy from the spurious zero energy mode is not considered. For low order elements, this 

phenomenon is quite severe and requires stabilization.

Within the class of “hourglass control” stabilization methods there are various options. Midas nGen

uses the physical stabilization method suggested by Puso14. As an example, for stable strain calculations 

of an 8-node hexahedron element, 1B is extressed in natural coordinates as shown below:

1 x h z xh hz zxx h z xh hz zx= + + + + +B B B B B B B% % % % % % %   (3.4.27)

If all strain values in the above equation are used, the effects due to reduced integration disappear.  As a 

result, a portion of shear strain terms are excluded.

The application of average strain and stabilization techniques not only gives the equivalent effect of 

selective reduced integration, but the numerical integration procedure is also replaced with the 

following equation and thus there is a huge benefit in computing speed.

                                                            
13  

Flanagan, D.P. and Belytschko, T., “A uniform strain hexahedron and quadrilateral with orthogonal 

hourglass control,” International Journal for Numerical Methods in Engineering, Vol. 17, 1981
14  

Puso, M.A., “A highly efficient enhanced assumed strain physically stabilized hexahedral element,”  

International Journal for Numerical Methods in Engineering, Vol. 49, 2000

4.5
Stabilization 

Technique for 

Reduced Integration
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[] []
8e

e
e

V
d d d dx h z

W
W =ò òòò   (3.4.28)

Non-conforming elements use strain decomposition methods to satisfy compatilibty conditions in 

integration form. The aforementioned EAS method is a kind of non-conforming element. In general, 

compatibility conditions between elements can be expressed in integration form as:

*

,
e e

i j i ju d u n dS
W ¶W

W =ò ò (3.4.29)

*u : displacement assumed within the element

u : displacement assumed on the outer surface of the element

jn : direction cosine orthogonal to the outer surface the element

j : differentiation in the j direction

Displacement assumed within the element is composed of the typical shape function and an additional 

portion:

* e= +u Nd Pλ         (3.4.30)

Similarly, displacement assumed on the outer surface of the element is composed of the typical shape 

function and an additional portion. However, the assumed displacement is expressed as an 

interpolation of the nodal point.

e ea= +u Nd Md          (3.4.31)

M : Additional shape function ( ¹ N )

In the above equation, a is a random coefficient, and an appropriate value is selected based on the 

convergence of the element or accuracy of the value. If equations 3.4.30 and 3.4.31 are substituted in 

3.4.29, λ may be calculated using ed . Applying the resulting value for λ , the element strain can be 

written as shown below: 

( )e= + Ñε Bd P λ                                                        (3.4.32)

4.6
Non-conforming 

element
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Using a non-conforming element is the equivalent of modifying the B matrix as shown below when 

using the assumed displacement method:

e= Ñ =ε u Bd                                                             (3.4.33)
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Continuum Elements

Continuum elements are used to model elements with volume, such as foundations or equipment. In 3-

dimensional analysis, continuum elements belong to the class of solid elements.

Solid elements are mainly used for modeling structural components with volume, such as foundation. 

Midas nGen provides the user with the option to choose between tetrahedrons, pentahedrons, or 

hexahedrons, and the elements may have 4, 5, 6, or 8 nodes. Pentahedrons may be wedge or pyramid 

shaped.

Coordinate System

A tetrahedronal element’s ECS is the equivalent of applying a plane stress element’s ECS to the 

triangular shape formed by nodes 1, 2, and 3.

A pentagonal wedge-shaped element’s ECS is the equivalent of applying a plane stress element’s ECS to 

the triangular shapes formed by the midpoints of nodes 1 and 4, 2 and 5, and 3 and 6.

A pentagonal pyramid-shaped element’s ECS is the equivalent of applying a plane stress element’s ECS 

to the quadrangular shape formed by nodes 1 2, 3, and 4.

In the case of a hexagonal element, vectors whose roles resemble those of typical ECS vectors are 

defined as follows:

► r : Vector connecting the midpoint of nodes 1, 5, 8, 4 to the midpoint of nodes 2, 6, 7, 3

► s : Vector connecting the midpoint of nodes 1, 2, 6, 5 to the midpoint of nodes 4, 3, 7, 8

► t : Vector connecting the midpoint of nodes 1, 2, 3, 4 to the midpoint of nodes 5, 6, 7, 8

The orthogonal coordinate system that is most adjacent to the above three vectors become the 

hexagonal element’s ECS.

Section 5

5.1 
Solid elements

Figure 3.5.1 Coordinate 

system for a solid element
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Degrees of Freedom

A solid element has degrees of freedom defined about the x, y, and z axes of the GCS.

{ }
T

i i i iu v w=u
  

(3.5.1)

Stress and Strain

A solid element’s stress and strain is defined by the GCS and the components are as follows:
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ε                                                                 (3.5.2)

(3-Dimensional Stress and Strain)
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GCS x-

GCS y-
GCS z-

,xx xxs e

,xy xyt g

,zx zxt g

,yy yys e

,xy xyt g

,yz yzt g

,zz zzs e

,yz yzt g

,zx zxt g

Figure 3.5.2 A solid element’s 

stress and strain
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Loads

A solid element may be subject to the following loads.

Load Type Description

Self-weight due to gravity Applied based on material density

Pressure load Distributed loading applied to the element surface

Element temperature load Element temperature that may cause volume changes

Element Result

In midas nGen, a solid element’s results are output using the default coordinate system specified by the 

user. The element result coordinate system (ERCS) that the user may select is the member’s element 

coordinate system (defined by the element units).

Result Description

Stress

Stress component
Location: vertex/element midpoint

xxs , yys , zzs , xyt , yzt , zxt

Principal stress
Location: vertex/element midpoint

1P , 2P , 3P , in the direction of principal stress

Von-Mises stress
Location: vertex/ element midpoint

vs

Max shear stress
Location : vertex/ element midpoint

maxt

Octahedral stress
Location : vertex/ element midpoint

ot

Mean pressure
Location : vertex/ element midpoint

0p

Selection of Elements

Midas nGen has a wide range of solid elements for the user to select from, that may improve 

computational efficiency. The following shows the commonly used names in the midas nGen software 

Table 3.5.1 Loads that are 

applicable to a solid element

Table 3.5.2 List of results for 

a solid element
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and the related finite element technique and integration methods. The shaded sections are the default 

values.
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Shape
Number 

of nodes
Name

Element 

technique

Stiffness 

matrix 

numerical 

integration

Lumped mass

calculation 

method

Tetrahedron 4

Full integration

Assumed 

displacement 

method

1 points Lobatto

Enhanced
EAS, u-p hybrid 

method
4 points Lobatto

Wedge 6

Full integration

Assumed 

displacement 

method

3X2 points Lobatto

Reduced integration

(stabilized)

Reduced 

integration 

method 

(stabilized)

1X1 points Lobatto

Hybrid Hybrid method 3X2 points Lobatto

Pyramid 5

Full integration

Assumed 

displacement 

method

4X 2points
Diagonal 

scaling

Reduced integration

Reduced 

integration 

method

1X1 points
Diagonal 

scaling

Hybrid Hybrid method 4X2 points
Diagonal 

scaling

Hexahedron 8

Full integration

Assumed 

displacement 

method

2X2X2

points
Lobatto

Reduced integration 

(stabilized)

Reduced 

integration 

(stabilized)

1X1X1 

points
Lobatto

Hybrid Hybrid method 2X2X2points Lobatto

Each element’s characteristics are outlined below.

Table 3.5.3 Various 

techniques that may be 

applied to a solid element
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► 4-node element : The displacement result does not depend on technique, but stress is most accurate 

when using EAS and u-p hybrid method. 

► 6-node element : Performance is particularly outstanding when applying the hybrid method for thin 

structural elements.

► 8-node element : Performance is particularly outstanding when applying the hybrid method for 

flexural structural elements or the reduced integration method.

Nonlinear analysis

P-delta effects cannot be considered for a solid element, and midas nGen only supports linear elastic 

materials for solid elements. Even in nonlinear analysis, these elements are still considered to be linear 

elements.
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Structural Elements

Structural elements are elements that most efficiently express certain loading conditions, and include 

truss, beam, and shell elements. When modeling, it is important to verify whether the loading and strain 

conditions are compatible with the element.

Truss elements are a 1-dimensional element defined by two nodes. These elements are usually used for 

modeling elements whose lengths are large relative to their cross section and thus whose flexural 

behaviors are neglected in analysis. A space truss or diagonal brace are examples of such cases.

Coordinate System

In the truss element’s ECS, the x-axis direction represents the direction from node 1 to node 2. Finite 

element formulation uses the ECS as the basis.

Degrees of Freedom

A truss element has displacement and rotation degrees of freedom in the x-axis direction of its ECS.

,xx xxN e

1

2

ECS x-

,x xM f

,xx xxN e

,x xM f

Section 6

6.1 
Truss element

Figure 3.6.1 Cooridnate 

system, stress, and strain for a 

truss element
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{ }i iu=u , { }i xiq=θ   (3.6.1)
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Stress and Strain

As shown in Figure 3.6.1, a truss element’s axial and torsional strain are defined with respect to the axis

defined in its ECS.

{ }xxN=N , { }xxe=ε                     (3.6.2)

(Axial force and strain)

         { }xM=T , { }xf=φ            (3.6.3)

(Torsional moment and rotation)

Loads

A truss element may be subject to the following loads.

Load Type Description

Self-weight due to gravity Applied based on material density

Element temperature load
Element temperature that may trigger an axial

length change

Element Results

The following table shows the element results generated when using a truss element. The basis 

coordinate system is always the ECS.

Result Description

Stress

Axial stress Location: Element midpoint, xxs

Torsional stress

Location: Element midpoint

Torsional stress is calculated based on c

( /Tc Jt = )

Force

/Moment

Axial force Location: Element midpoint, xxN

Torsional Moment Location: Element midpoint, xM

Nonlinear Analysis

Table 3.6.1 Loads that may be 

applied to a truss element

Table 3.6.2 List of truss 

element results
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Truss elements can incorporate geometric nonlinearity for the output of linear buckling analysis and P-

delta analysis. These elements may be specified as compression- or tension-only elements, and these 

settings will be applied as a material property. In the case of compression- or tension-only elements, 

nonlinear analysis is conducted automatically for typical static loads. For nonlinear loading 

combinations, compressive or tensile properties are determined depending on the case. The software 

will also output the contribution from each load case.

Beam elements are 1-dimensional linear elements defined by two nodes, and are used to model 

elements with long lengths (compared to their cross-sectional areas) that experience flexural 

deformations. If the ratio of the cross-sectional height or width to the length exceeds 1/5, effects of 

shear deformations may dominate. In such cases, it is recommended that the user resort to shell or solid 

elements in place of the beam element.

Coordinate System

The ECS of a beam element is automatically decided based on its location in space. Finite element 

formulation for a beam element is based on its ECS. The ECS is defined using the following process.

ECS-x: ECS-x is defined to be in the direction in which the GCS-X component is positive based on 

the constructured 1-dimensional member vector. In the case in which the 1-dimensional member’s x-

axis vector component is zero, the direction in which the GCS-Y component is positive is used. In the 

case in which both the x-axis and y-axis vector components are zero, the direction in which the GCS-

Z component is positive is used.

ECS-z: ECS-z is defined after determining the ECS-x axis. The GCS-z axis is projected onto the plane 

perpendicular to ECS-x, and the ECS-z is defined to be in the positive direction of the projection of the

GCS z-axis.

If the ECS-x and GCS-z axes are equal, the ECS-z cannot be defined following the procedure outlined 

above. Thus, the GCS-y axis is projected onto the plane perpendicular to ECS-x, and the ECS-y is 

determined to be in the positive direction of the projection of the GCS y-axis.

6.2
Beam Element
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Degrees of freedom

A beam element has displacement and rotation degrees of freedom in all axes directions of its ECS.

{ }
T

i i i iu v w=u , { }
T

i xi yi ziq q q=θ (3.6.4)

Stress and strain

z
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z
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2

Figure 3.6.2 The development 

of a beam element’s ECS 

based on its location in space
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As shown in Figure 3.6.3, a beam element will experience axial, flexural, torsional, and shear strains. 

When neglecting shear strains (by applying Euler’s principle), shear area should be set to zero.

{ }xxN=N , { }xxe=ε   (3.6.5)

(Axial force and strain)
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κ    (3.6.6)

(Flexural moment and curvature)

{ }xM=T , { }xf=φ     (3.6.7)

(Torsional moment and rotation)
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g                                (3.6.8)

(Shear force and strain)

Loads

A beam element may be subject to the following loads.

Load Type Description

Self-weight due to gravity Applied based on material density

ECS x-
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2

ECS y-

ECS z-

,x xM f
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,z zM k

,z zxQ g

,y yM k
,y xyQ g

,x xM f
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,z zM k
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,y yM k

,y xyQ g

Figure 3.6.3 Coordinate 

system, stress, and strain for a 

beam element

Table 3.6.3 Loads that may be 

applied to a beam element
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Beam element load

Distributed loading applied to an arbitrary portion 

of the distance between the two element nodes, or a 

concentrated load applied to an arbitrary location 

between the two element nodes

Beam element temperature load

Average cross-sectional temperature load that may 

cause an axial length change

Cross-sectional temperature gradient that may 

cause a differential curvature

Beam element loading can be expressed as a distributed or concentrated loading as shown in Figure 

3.6.4, and the direction can be defined based on either the ECS or the GCS. If the distributed loading is 

defined based on the GCS, the load should be defined in such a way that incorporates the angle 

between the GCS and ECS. This way, the load will be effectively applied based on the length of the 

segment perpendicular to the loading direction.

1 2

21

P M

1p
2p 2m

1m
Figure 3.6.4 Examples of 

loading on the beam element

Figure 3.6.5 Load angle 

adjustments based on the 

loading direction for a beam 

element
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Element Results

It is important to be able to view the results at not only the endpoints of a beam element but also at 

internal points along the length of the beam. Thus, each element is partitioned into four output 

segments of equal length. Beam elments may be viewed at the endpoints (A-B) of each output segment, 

and the results are shown in the list below. The basis coordinate system for stress and force is always

the ECS. For internal displacement, which is used in calculating the member’s greatest relative 

deflection, the basis coordinate system is always the GCS.

Result Description

Stress

Axial stress
Location: Points A-B of each segment

xxs

Torsional stress
Location: Points A-B of each segment

Torsional stress is calculated from c ( /Tc Jt = )

Combined stress

Location: Points A-B of each segment, xxs due to 

axial force and flexure at user-specified locations 

(1,2,3,4)

Combined stress-Max

Location: Points A-B of each segment

The absolute maximum value of the sums of axial 

stress and point stress at locations 1~4

Bending stress

Location: Points A-B of each segment

The absolute maximum of the bending stress in 

each direction xxs at locations 1~4

Torsional stress

Location: Points A-B of each segment

Calculated at the location at which the ratio of the 

1st moment of area to the product of the cross-

sectional width and area moment of inertia is 

maximized

Shear stress
Location: Points A-B of each segment

/ ( )xy y kyQ S At = , / ( )xz z kzQ S At =

Von-mises stress
Location: Points A-B of each segment

( )2 2 2 23v xx xy xz xxs s t t t= + + +

Force

/Moment

Axial force
Location: Points A-B of each segment

xxN

Bending moment Location: Points A-B of each segment

Table 3.6.4 List of element 

results for a beam element



Chapter 3. ElementsANALYSIS REFERENCE

Section 6. Structural Elements | 44

yM , zM

Torsional moment
Location: Points A-B of each segment

xM

Shear force
Location: Points A-B of each segment

yQ , zQ

Internal 

displacement
Translation XT , YT , ZT

Internal Displacement

In each output segment, the displacement is calculated based on linear beam theory, which takes into 

account shear strains. The calculated displacement reflects all loading cases and offset information that 

may be applied in midas nGen. Therefore, the result is equal to the value obtained by subdividing the 

element and accurate displacement may be achieved even with a few elements. However, because the 

results are based on linear assumptions, the values do not reflect nonlinear effects such as P-delta 

effects.

End release

End releases are used when, for both ends of a structural member (such as in the case of pin 

connection), mutual restraints for motion in a specific direction do not occur. End releases are applied 

Figure 3.6.6 Beam element 

result locations and directions
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in the ECS, so users defining conditions in the GCS should be aware of the relationship between the 

two coordinate systems. Moreover, nodes at which end releases have been applied will attain new 

degrees of freedom for unrestrained motions. Thus, the entire structure to which these nodes connect 

may become unstable. Therefore, a comprehensive consideration of the structure’s stability—including 

the end releases—is necessary.

Offsets

Offsets may be used on beam elements when the neutral axis is isolated from the nodes or if the neutral 

axes of connecting elements do not match. Offsets are defined based on the beam element nodes’ NCS. 

When the offset is set up in the axial direction of the element, it is interpreted as a change in element 

length.

Rotation DOF 
released

Translation DOF
released

Pin joint

Sliding joint
Figure 3.6.7 Examples of 

applying end releases

Figure 3.6.8 Examples of 

applying offsets
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Rigid End Offsets

A structure composed of frame members will be analyzed by taking the length of its members to be the 

distances between the intersections of element neutral axes. As a result, a rather large displacement—as 

well as end and center moment—may be calculated. To resolve this issue, beam and column 

connections or rigid end zones may be considered.

If it is assumed that there is neither flexural nor shear deformation at the connections, the effective 

length for flexural and shear deflection may be expressed as the difference between the distance 

between the intersection of each members’ neutral axes (both end points) and the rigid end offset length:

( )' i jL L ZF R R= - +             (3.6.9)

If the element length is only considered to be a function of the effective length, a small error may occur 

with computation of the deformation occurring at the connection. The error may be controlled by using 

X

Z

Y

eccentricity in the 
X-direction

eccentricity in the 
Z-direction

eccentricity in the 
Y-direction

'L : Effective length

L : Distance between the intersection of neutral axes

,i jR R : Rigid end lengths of the end points

ZF : Rigid end modification factor ( 0 1ZF£ £ )
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the rigid end modification factor. This factor does not affect axial or torsional deformation, because,

when calculating the axial and torsional deformations, the entire length of the element (L) is used.

The rigid end offset may be used by incorporating the panel zone effects or by manually setting the rigid 

end lengths. In the latter instance, the rigid end modification factor is essentially 1.0.

The user must be cautious of the following details when using rigid end offsets.

▶Calculation of element stiffness : When calculating element stiffness, the distance between the 

elements is used to calculate axial and torsional stiffness. When calculating shear or flexural stiffness, 

the effective length (after incorporating the rigid end modification factor) is used.

▶Calculation of distributed loading or self-weight: the distributed loading that is placed between the 

element nodes and rigid end offsets are only considered at the nodes as a shearing force, and the 

distributed loading on the remaining lengths are replaced as an equivalent shearing force and moment.

▶ When incorporating end releases: Rigid end offsets should be considered at the connections of 

column or girder members, in the case where either or both end connections have end releases due to a 

pinned connection.

Tapered Section

rigid  end  offset distance  
of  a  beam  member
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Figure 3.6.9 Rigid end offsets

built into a beam column 

connection
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Changes in the cross section of a beam element are defined based on the ECS. In the case of a 

quadrilateral cross section whose y-axis experiences linear changes along the length and the z-axis is 

constant, the cross-sectional area undergoes first-order changes and the moment of inertia undergoes 

third-order changes. The following list shows the degree of changes that area and moment of inertia 

(for each axis) undergo for different tapered sections.

y-axis z-axis A ( )xxI J= yyI zzI

constant constant 1 1 1 1

constant linear 1 1 3 1

linear constant 1 1 1 3

linear linear 2 2 4 4

( ) ( )1 2 1

m

m m m
x

A x A A A
L

ì üæ ö
= + -í ýç ÷

è øî þ
, 1, 2m =         (3.6.10)

( ) ( )1 2 1

n

n n n
x

I x I I I
L

ì üæ ö
= + -í ýç ÷

è øî þ
,  1,3, 4n = (3.6.11)

Here, the subscripts attached to the cross-sectional area and moment of inertia signify the ends of the 

element.

Geometric stiffness calculations use the effective cross section properties instead, as shown below.

1 2

2 1 2 2

, 1
2

, 2
3

eff

A A
m

A
A A A A

m

+ì
=ï

ï
= í

+ +ï
=ïî

                   (3.6.12)

3 34 4
1 1 2 1 2 1 2 2

5

I I I I I I I I
I

+ + + +
=                  (3.6.13)

Nonlinear Analysis

Beam elements can only incorporate geometric nonlinearities, and cannot take on nonlinear or inelastic 

material properties.

Crane Moving Analysis

Table 3.6.5 Degree of cross 

section changes in a beam 

element with a tapered section
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With beam elements, concurrent force/moment may be verified through crane moving analysis results. 

Like typical analysis results, outputs may be viewed at both ends of each segment. Additional selection 

criteria exist to ensure that load conditions for which the maximum and minimum values are equivalent 

tend to be less preferred.

Maximum/minimum selection criteria

component

Additional selection 

criteria 1
Additional selection criteria 2

Concurrent 

force/moment

xxN 2 2

y zM M+ 2 2

y zQ Q+

yQ xxN zQ

zQ xxN
yQ

xM 2 2

y zQ Q+ 2 2

y zM M+

yM zM xxN

zM yM xxN

Shell elements are triangular or quadrilateral elements that are defined by three or four nodes on a 

curved surface. These elements are often used to model walls, pipes with large diameters, or other 

elements with small thickness subject to flexural strains. Shell elements take into account 2-dimensional 

stress conditions and flexural or shear strains.

Coordinate System

Oftentimes, shell elements are defined as curved surfaces and the element nodes may not all exist on the 

same plane. This is reflected in the definition of the ECS. The x-axis of the ECS is defined to be in the 

direction of the vector connecting node 1 to node 2. The z-axis is defined to be in the cross product of 

the vector connecting node 1 to node 2 and the vector connecting node 1 to node 3. In the case of a 

quadrilateral shell element, the ECS x-axis is defined as the vector bisecting the angle between the 

diagonal connecting nodes 1 to 3 and the diagonal connecting nodes 4 to 2. The cross product of these 

two diagonals is defined as the ECS z-axis. The finite element formulation for a shell element is based 

on the ECS.

Table 3.6.6 Selection criteria 

for crane moving analysis 

results of a beam element

6.3
Shell Elements
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To define the material directionality (for constructing the MCS), the user may either specify an angle 

relative to the vector connecting nodes 1 and 2, or define an arbitrary coordinate system.

Curved surface modeling

The shell element in midas nGen assumes an inherent normal vector for each node, which is called the 

director. Strain is expressed as a function of this vector’s motion. The direction of the rotational degree 

of freedom for each element node is also defined based on the director, and, thus, there is no moment 

about the director within the element. This vector may be normal to the element surface, but this is not 

the case for shell elements modeling a curved surface.

For example, consider Figure 3.6.11. There is a refraction angle between adjacent angles, and in such 

cases the surface normal vector may be calculated as follows:

i

i

=
å
å

n
t

n
(3.6.14)

1

2

3

ECS x-

ECS y-

ECS z-

2

1
3

4

ECS x-

ECS y-

ECS z-

Shell 1 Shell 2

1n 2n

t

Element normal Element normal

Surface normal

2b1b

Figure 3.6.10 Coordinate 

systems of a shell element

Figure 3.6.11 Angle between 

elements when modeling a 

curved surface
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t : Surface normal vector (normal to the curved surface)

in : Vectors normal to the element surface

Here, if the angle b between t and in exceeds the allowable value, then the member is considered as 

an angled member and a surface normal vector is not defined. At nodes where a curved surface normal 

vector is not defined, the director becomes the vector normal to the element surface.

Expressing geometric characteristics by creating a surface normal vector can greatly improve accuracy 

of results, but it is important to be cautious of using this method when using symmetry conditions to 

model a half circle or quarter circle. Because the shell 2 in Figure 3.6.11 does not exist for models with 

symmetry conditions, it is impossible to attain a surface normal vector that is geometrically accurate. In 

such cases, it is in fact better to not create a surface normal vector.

Degrees of freedom

The ECS of a shell element has displacement degrees of freedom for x, y, and z axes.

{ }
T

i i i iu v w=u (3.6.15)

The rotational degrees of freedom are defined by the two directions orthogonal to the director:

  { }i xi yiq q=θ (3.6.16)

As previously explained, the director is a curved surface normal vector or the element normal vector. 

Stress and strain

As shown in Figure 3.6.12, a shell element can experience 2-dimensional stress conditions, flexural 

strains, and shear strains defined based on the ECS. The shell element used in midas nGen always 

considers shear strains.
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ε     (3.6.17)

(In-plane stress and strain)
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(Flexural moment and curvature)
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Q

Q

ì üï ï
= í ý
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Q , zx
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g
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= í ý
ï ïî þ

γ      (3.6.19)

(Shear force and strain)

Loads

A shell element may be subject to the following loads.

ECS y-

ECS x- ,xx xxN e

,xy xyN g

,xy xyN g

,xy xyN g

,xy xyN g

,xx xxN e

,yy yyN e

,yy yyN e

,xx xxM k

,xx xxM k

,yy yyM k

,yy yyM k

,xy xyM k

,xy xyM k

,xy xyM k

,xy xyM k

,zx zxQ g

,zx zxQ g

,yz yzQ g

,yz yzQ g

Figure 3.6.12 Stress and strain 

for a shell element



ANALYSIS REFERENCE Chapter 3. Elements

53 | Section 6. Structural Elements

Load Type Description

Self-weight due to gravity Applied based on material density

Pressure load
Distributed loading that may be applied to the 

element surface or side

Element temperature load

Temperature load that may cause an axial 

deformation

Temperature gradient that may trigger a 

rotational strain

Table 3.6.7 Loads that may be 

applied to a shell element
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Element Results

In midas nGen, shell element results are provided at two locations: the upper and lower surfaces in the 

direction of the element thickness. The following shows the element results for a shell element. The 

basis coordinate system is the element coordinate system (ECS).

Result Description

Stress

In-plane stress
Location: Upper/lower, vertex/element center

xxs , yys , xyt

Principal stress
Location: Upper/lower, vertex/element center

1P , 2P , 주응력 방향

Von-Mises stress
Location: Upper/lower, vertex/element center

vs

Max shear stress
Location: Upper/lower, vertex/element center

maxt

Maximum values

Location: vertex/element center

The maximum value between upper/lower 

surfaces, ( 1P , 2P , vs , maxt )

Force/

Moment

In-plane force
Location: vertex/element center

xxN , yyN , xyN

Bending moment
Location: vertex/element center

xxM , yyM , xyM

Shear force
Location: vertex/element center

zxQ , zyQ

Principal in-plane force
Location: vertex/element center

1N , 2N

Principal bending moment
Location: vertex/element center

1M , 2M

Max shear force
Location: vertex/element center

maxQ

Table 3.6.8 List of element 

results for a shell element
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Offsets

When the shell element’s neutral plane is separated from the element nodes, or when the neutral planes 

of connecting elements do not match, offsets may be used. Offsets within a shell element may take on 

constant values in the direction of the element director. 

End releases

End releases are used in situations in which, for element nodes, mutual restraints do not occur in a 

specific direction of motion, such as in the case of pin connections. Unlike beam elements, the end 

releases for shell elements are applied based on the NCS. If the user wishes to input conditions based on 

the ECS, then the relationship between the NCS and ECS should be accounted for. Moreover, nodes at 

which end releases have been applied will attain new degrees of freedom for those unrestrained motions, 

and thus the entire structure that is connected to these nodes may become unstable. Therefore, a 

comprehensive consideration of the structure’s stability—including the end releases—is necessary.

Selection of Elements

Midas nGen has a wide range of shell elements for the user to select from. In particular, depending on 

the direction in which strains may develop in a shell element (for example, depending on the in-plane 

and lateral directions), techniques and methods that can be used will vary widely. The following shows 

ERCS y-

ERCS x-
xxN

xyN

xyN

xyN

xyN

xxN

yyN

yyN

xxM

xxM

yyM

yyM

xyM

xyM

,xy xyM k

xyM

zxQ

zxQ
yzQ

,yz yzQ g Top

Bottom

Figure 3.6.13 Shell element 

result directions
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the commonly used names in the midas nGen software and the related finite element technique and 

integration methods. The hybrid method is the default method.

Shape

Numbe

r of 

nodes

Number 

of 

degrees 

of 

freedom 

per 

node

Name
Element Technique

(In-plane/Lateral)

Stiffness 

matrix 

numeric

al 

integrati

on

Lumped 

mass 

calculatio

n method

Triang

ular
3 5

Full integration

Assumed 

displacement 

method/ANS

1 points Lobatto

Hybrid

Hybrid 

method/ANS+Hybr

id method

3 points Lobatto

Quadr

ilateral
4 5

Full integration

Assumed 

displacement 

method/ANS

2X2

points
Lobatto

Reduced 

integration 

(stabilized)

Reduced integration 

/ANS

(stabilized)

1x1 

points
Lobatto

Hybrid

Hybrid 

method/ANS+Hybr

id method

2X2

points
Lobatto

Nonlinear Analysis

Shell elements cannot incorporate P-delta effects. In midas nGen, shell elements may only take on 

linear elastic material properties. In nonlinear analyses, the shell elements are still considered to behave 

linearly. 

Table 3.7.9 Various 

techniques that may be 

applied to a shell element
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Special Use Elements

Point spring/damper elements are used in a variety of situations. They may be used to incorporate 

elastic stiffnesses of adjacent structures or foundation/ground boundary conditions that lie at the 

boundary zones of a model. They may also be used to prevent singular errors that occur due to trusses 

that may lack sufficient degrees of freedom. Furthermore, they may be used to incorporate not only 

elastic stiffness but also damping constants into modeling ground viscosity boundary conditions. Nodal 

damping is not applied in static analyses and only applied in dynamic analyses.

Coordinate System

Point spring/damper elements do not define their own coordinate systems and refer to the GCS.

Degrees of Freedom

Point spring/damper elements have displacement and rotational degrees of freedom about all three axes.

{ }
T

i i i iu v w=u , { }
T

i xi yi ziq q q=θ (3.7.1)

Element Force

Point spring/damper elements may experience force and moment in the three axial directions.
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(Axial force and moment)

Loads

Point spring/damper elements do not take on material properties and are defined by their stiffnesses. 

Consequently, only concentrated loads or moments may be applied.

Section 7

7.1
Point 
Spring/Damper

Element
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Element Results

In midas nGen, the point spring/damper element results are calculated and output based on the GCS.

Result Description

Force Force
Location: Element center

xxN , yyN , zzN

Moment Bending moment
Location: Element center

xxM , yyM , zzM

Elastic link elements connect two nodes with a user-defined stiffness and thus, like point spring 

elements, do not have any other structural properties other than stiffness. Typical elastic link elements 

have translational and rotational stiffness properties defined with respect to each of the three axes. In 

addition, tension-only and compression-only properties may be assigned, but in such a case, stiffnesses 

may only be set in the ECS-x direction. Elastic links can be applied to elastomeric bearings or 

ground boundary conditions that have compression-only characteristics.

Coordinate System/Degrees of Freedom

Elastic link element coordinate systems and degrees of freedom are defined in the same way as those of 

beam elements.

Element Force

Like point spring elements, elastic link elements may experience force and moment in all three axial 

directions.

Load

Like point spring elements, element link elements may not be subject to loads other than concentrated 

forces and moments.

Element Results

Element results for an elastic link element are the same as those of a point spring element, but the basis 

coordinate system is always the ECS.

Table 3.7.1 List of results for 

point spring/damper elements

7.2
Elastic Link Element
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Rigid link and interpolation elements restrain relative movement between element nodes. Here, the 

principal agents of the restraint are called the independent node or independent DOF. The node or 

DOF that receives restraint is referred to as the dependent node or dependent DOF, respectively. 

Rigid link elements restrain the relative geometric motion of various nodes caused by a single node. In 

other words, various dependent nodes are connected to an independent node. The relationship between 

independent and dependent nodes is as follows:

( )D I I I I

D I

= + ´ = + D ´

=

u u r θ u x θ

θ θ
                 (3.7.3)

,D Du θ : Displacement and rotation of a dependent node

,I Iu θ : Displacement and rotation of an independent node

Dx : Vector pointing from a dependent node to an independent node ( I D-x x )

To define the degree of freedom which responds to the restraint on the independent node, the user may 

select from the six degrees of freedom belonging to the dependent node. With this, the user may define 

a rigid link element that is defined in a specific direction.

The following shows an example of inducing rigid body motion in the x-y plane.

ΔyD I I
zu u q= - , ΔxD I I

zv v q= + , D I
z zq q=    (3.7.4)

x

y

1

1

2

34

x

y

Independent node

2

34

7.3
Rigid 
Link/Interpolation

Element

Figure 3.7.1 Example of in-

plane rigid body motion
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An interpolation element allows for the definition of a single node’s motion based on the motion of 

other selected nodes. Thus, various independent nodes are connected to a single dependent node. 

Interpolation elements are used to distribute loads due to equipment across various nodes, and are used 

internally within the software. Consequently, interpolaton elements restrain fewer nodes compared to 

rigid link elements, and thus have a reduced restraining ability. The following example shows how force 

is distributed, in order to demonstrate the displacement relationship between the independent and 

dependent nodes, on a two-dimensional x-y plane.

Figure 3.7.2 shows independent nodes that is subjected to distributed loading to weight iw . The 

dependent node is located at a distance of e from the center of mass of these nodes. Then, the force 

DF and moment DM exerted on the dependent node may be expressed as a moment ( D DM e F+ ´ ) 

with respect to the center of mass. The force and moment exerted on the center of mass due to the 

dependent node may be dispersed to each independent node as a weighted average force, as shown 

below:

( )( )
def

1ˆ D D D
i i iw -= + + ´ ´F F T M e F r (3.7.5)

Here, ˆ
iw is a weight normalized by the sum of the weights. T is an intertia tensor that represents the 

average based on the center of mass of the dependent nodes.

ˆ i
i

i

w
w

w
=
å

(3.7.6)

( )ˆ
i i i i i

i

w T Té ù= -ë ûåT r r I r r       (3.7.7)

The force relationship may then be transformed into displacement and rotation relationships.

C.G.

1w

2w

3w

Reference
point

D D+ ´M e F

e

DF

DM

DF

2r

1r
3r

Figure 3.7.2 Relationship 

between the center of mass of 

the independent node and the 

force exerted on the 

dependent node
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( )1ˆ ˆD I I
i i i

i i

w w-æ ö
= + ´ ´ç ÷

è ø
å åu u T r u e          (3.7.8)

( )1 ˆD I
i i

i

wq -= ´åT r u    (3.7.9)

Eventually, the relationship defines how the average motion of the independent nodes determines the 

motion of the dependent nodes. As a result of this characteristic, relative to the rigid link element, the 

interpolation element restrains fewer degrees of freedom.

Figure 3.7.3 Comparison of 

the motion of rigid link

elements and interpolation 

elements
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Geometric Stiffness

Geometric or stress stiffnesses are stiffnesses that occur due to a change in internal force caused by 

geometric changes in a structure with nonzero resistance to force. Geometric stiffnersses are used in 

linear buckling analyses and P-delta analyses. The following shows a list of elements that incorporate 

geometric stiffness.

Element Type Force component

Degree of Freedom component

P-delta Analysis
Linear Buckling 

Analysis

Truss Axial force xxN Axial force xxN Axial force xxN

Elastic Link Axial force xxN Axial force xxN Axial force xxN

Beam Axial force xxN Axial force xxN Axial force xxN

Shell

In-plane resultant force xxN , yyN , 

xyN

Flexural Moment xxM , yyM , xyM

Shear force zxQ , yzQ

- Axial force xxN

Solid
Stress Components

xxs , yys , zzs , xyt , yzt , zxt
- u , v , w

Midas nGen calculates geometric stiffness using the updated Lagrangian formulation, which assumes 

the objective stress rate to be the Jaumann stress rate. For example, the internal force of a solid element 

may be calculated as a function of stress and assumed strain, as shown below:

i i ij iju f D dVd s d= ò    (3.8.1)

Section 8

Table 3.8.1 Element types that 

incorporate geometric stiffness

8.1 
Calculation of 

geometric stiffness
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ijDd : assumed strain  
1

( )
2

ji

j i

uu

x x

dd ¶¶
+

¶ ¶

The tangent slope of the internal force is a stiffness, and if we take the variation of the previous 

equation, the integrand becomes:

ij ij ij ijd D d Ds d s d+   (3.8.2)

In the above equation, variation was neglected for the region of integration. A solid element’s EFCS is 

the GCS, so it is fixed regardless of strain in the structure. Thus, 0ijd Dd = . The stress increment due 

to the objective stress rate in the first equation is as follows:

ij ik kj ij jk ijkl kld dw dw C dDs s s= + +        (3.8.3)

ijwd : Incremental spin  
1

( )
2

ji

j i

uu

x x

dd ¶¶
-

¶ ¶

If equations 3.8.2 and 3.8.3 are substituted into equation 3.8.1 and then rearranged, the tangent 

stiffness may be obtained as follows:

( 2 )i ij j ij ijkl kl ij ki kj ik kju K du D C dD L dL D dD dVd d s d d= + -ò        (3.8.4)

ijLd : Incremental displacement gradient, ij ijD wd d+

In the integrand, the first term is the material stiffness and the second term is the geometric stiffness.
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Element Examples

1) Twisted Beam

REFERENCE MacNeal et al.1

ELEMENTS Shell elements, solid elements
MODEL FILENAME Element01.mpb

The figure below shows a beam model whose cross-section is rotated by 90 degrees at the 

free end. The left end is restrained as a fixed end. The problem is to verify the performance 
of the element using the displacement at point A, caused by the element’s in-plane and out-

of-plane motions due to the uniform distributed loads at the right end.

Material data Elastic modulus

Poisson’s ratio

E = 29 MPa

n = 0.22

Section property Thickness t = 0.32 m

X

Z
Y

Out-of-plane shear
FY = 1 N

In-plane shear
FZ = -1 N

A

1.1 12

Units : m

Section 9

Figure 9.1.1
Twisted beam model
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Table 9.1.1  Displacements Yu and Zu at the point A - shell elements

Table 9.1.2  Displacements Yu and Zu at the point A - solid elements

Load
A
Zu [m]

in-plane shear ZF

A
Yu [m]

out-of-plane shear 

YF

Reference 5.424´10-3 1.754´10-3

Element type Number of elements

TRIA-3 2´(12´2) 5.322´10-3 1.463´10-3

QUAD-4 2´12 5.405´10-3 1.733´10-3

Load
A
Zu [m]

in-plane shear ZF

A
Yu [m]

out-of-plane shear 

YF

Reference 5.424´10-3 1.754´10-3

Element type Number of elements

TETRA-4 144 0.384´10-3 0.267´10-3

PENTA-6 48´1 2.344´10-3 0.743´10-3

HEXA-8 2´12´1 5.411´10-3 1.738´10-3
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2) Curved Cantilever Beam

REFERENCE MacNeal et al.
1

ELEMENTS Beam elements, shell elements, solid elements

MODEL FILENAME Element02.mpb

The figure below shows a curved cantilever beam with a fixed right end. In-plane and out-of-

plane shear distributed loads are applied to the left end. The problem is to verify the element 

performance (specifically in-plane and out-of-plane motion) through the displacement at 

point A.

Material data Elastic modulus

Poisson’s ratio

E = 10 Mpsi

n = 0.25

Section property Thickness t = 0.1 in

X

Z

Y

Out-of-plane 
shear

FZ = 1 lbf

In-plane shear
FY = -1 lbf

Ø 8.24 

Ø 8.64 A

Units : in
Figure 9.2.1
Curved cantilevered 
beam model
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Table 9.2.1 Displacements Yu and Zu at the point A - beam elements

Table 9.2.2  Displacements Yu and Zu at the point A - shell elements

Table 9.2.3  Displacements Yu and Zu at the point A - solid elements

Load
A
Yu [in]

in-plane shear YF

A
Zu [in]

out-of-plane shear 

ZF

Reference -8.734´10-2 5.022´10-1

Element type Number of elements

BEAM-2 6 -8.735x10-2 4.968x10-1

Load

A
Yu [in]

in-plane shear YF

A
Zu [in]

out-of-plane shear 

ZF

Reference -8.734´10-2 5.022´10-1

Element type Number of elements

TRIA-3 1x(6x2) -0.222x10-2 4.347x10-1

QUAD-4 1x6 -8.543x10-2 4.739x10-1

Load

A
Yu [in]

in-plane shear YF

A
Zu [in]

out-of-plane shear 

ZF

Reference -8.734´10-2 5.022´10-1

Element type Number of elements

TETRA-4 76 -0.236x10-2 0.043x10-1

PENTA-6 1 x (6 x 2) x 1 -0.221x10-2 0.347x10-1

HEXA-8 1 x 6 x 1 -8.534x10-2 4.415x10-1
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3) Cantilever Beam

REFERENCE MacNeal et al.1

ELEMENTS Shell elements, solid elements

MODEL FILENAME Element03.mpb

The figure below shows a linear cantilever beam whose left end is fixed. The problem is to 

verify how the element results change as a function of the mesh, when there is a 

concentrated load and torque load in three different directions at node A. Element 
performance may be verified by checking the displacement components at point A. Here, 

the angle of rotation refers to the calculated relative angle of rotation due to the 

displacements of points B and C.

Material data Elastic modulus

Poisson’s ratio

E = 10 Mpsi

n = 0.3

Section property Thickness t = 0.1 in

Mesh (A)

Mesh (B)

45o 45o

Mesh (C)

45o

A

X

Z

Y

B

C

A

B

C

A

B

C

Figure 9.3.1
Cantilever beam model
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Table 9.3.1  Displacements and rotation at the point A  - shell elements, mesh (A)

Table 9.3.2  Displacements and rotation at the point A - shell elements, mesh (B)

Table 9.3.3  Displacements and rotation at the point A - shell elements, mesh (C)

Load
A
Xu [in]

extension XF

A
Yu [in]

out-of-plane

YF

A
Zu [in]

in-plane ZF

A
Xq [rad]

twist XM

Reference 3.000´10-5 4.321´10-1 1.081´10-1 3.408´10-2

Element type
Number of 

elements

TRIA-3 2´(12´2) 3.000´10-5 4.199x10-1 0.034x10-1 2.979x10-2

QUAD-4 2´12 3.000´10
-5

4.238x10
-1

1.073x10
-1

3.019x10
-2

Load
A
Xu [in]

extension XF

A
Yu [in]

out-of-plane YF

A
Zu [in]

in-plane ZF

A
Xq [rad]

twist XM

Reference 3.000´10-5 4.321´10-1 1.081´10-1 3.408´10-2

Element type
Number of 

elements

TRIA-3 2´(12´2) 3.000´10-5 4.177x10-1 0.016x10-1 3.137x10-2

QUAD-4 2´12 3.000´10-5 4.171x10-1 0.240x10-1 3.020x10-2

Load
A
Xu [in]

extension XF

A
Yu [in]

out-of-plane YF

A
Zu [in]

in-plane ZF

A
Xq [rad]

twist XM

Reference 3.000´10-5 4.321´10-1 1.081´10-1 3.408´10-2

Element type
Number of 

elements

TRIA-3 2´(12´2) 3.000´10-5 4.201x10-1 0.024x10-1 3.508x10-2

QUAD-4 2´12 3.000´10-5 4.238x10-1 0.086x10-1 3.022x10-2
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Table 9.3.4  Displacements and rotation at the point A - solid elements, mesh (A)

Load
A
Xu [in]

extension XF

A
Yu [in]

out-of-plane YF

A
Zu [in]

in-plane ZF

A
Xq [rad]

twist XM

Reference 3.000´10-5 4.321´10-1 1.081´10-1 3.408´10-2

Element type
Number of 

elements

TETRA-4 222 3.000´10-5 0.031x10-1 0.023x10-1 0.029x10-2

PENTA-6 1x(6x2)x1 3.000´10-5 0.509x10-1 0.034x10-1 0.077x10-2

HEXA-8 1x6x1 3.000´10-5 4.249x10-1 1.072x10-1 2.931x10-2
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4) Pinched Hemispherical Shell with Hole

REFERENCE MacNeal et al.1, Simo et al.
2

ELEMENTS Shell elements, solid elements

MODEL FILENAME Linearstatic04.mpb

The figure below shows a pinched hemispherical shell with a 18˚ hole at the top. Using 

symmetry conditions, only ¼ of the hemisphere was modeled. Concentrated loads are 

applied at at point A (pointing outwards) and at point B (pointing inwards). The problem is to 
verify the element model using the displacement at point A.

Material data Elastic modulus

Poisson’s ratio

E = 6.825x107 psi

n = 0.3

Section property Thickness t = 0.04 in

Table 2.4.1 Displacement Xu at the point A - shell elements

Z
18o

X

F = 1

Y

F = 1 

A

B

Figure 9.4.1
Pinched hemispherical 
shell with hole



ANALYSIS REFERENCE Chapter 3. Elements

73 | Section 9. Element Examples

Table 2.4.2 Displacement Xu at the point A - solid elements

A
Xu [in]

Reference 9.4x10-2 (Ref. 1), 9.3x10-2(Ref. 2)

Number of elements

per side
4 8 12

Element 

type

TRIA-3 9.799x10-2 9.439 x10-2 9.343 x10-2

QUAD-4 9.701x10-2 9.445 x10-2 9.373 x10-2

A
Xu [in]

Reference 9.4x10-2 (Ref. 1), 9.3x10-2(Ref. 2)

Number of elements

per side
4 8 12

Element 

type

PENTA-6 0.004 x10-2 0.015 x10-2 0.033 x10-2

HEXA-8 1.016 x10-2 7.404 x10-2 8.872 x10-2
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5) In-plane Truss

REFERENCE McCormac3

ELEMENTS Truss elements

MODEL FILENAME Element05.mpb

The figure below shows a 2-dimensional in-plane truss made of elements with various 

cross-sectional profiles. Vertical loads are applied to points A, B, and C. The problem is to 

verify the vertical displacement at point A under these loading conditions.

Material data Elastic modulus E = 3.0x104 psi

Section property Area

A = 1.0 in2   (element-a)

A = 2.0 in2   (element-b)

A = 1.5 in2   (element-c)

A = 3.0 in2   (element-d)

A = 4.0 in2   (element-e)

20 kips 20 kips 20 kips

A

B C

a

a a

a

bb

c cd d
d

e e

180 180 180 180

180

X

Z

Units : in

Figure 9.5.1
Truss model
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Table 9.5.1 Displacement 
Zu at the point A

A
Zu [in]

Reference -2.63

TRUSS-2 13-elements -2.63
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6) Diamond-Shaped Plate

REFERENCE NAFEMS
4

KEYWORDS Shell elements, solid elements

MODEL FILENAME Element06.mpb

The figure below shows a diamond-shaped plate model with obtuse angles of 150 degrees. 

It is subject to a uniform load of 700 Pa. Element performance is verified using the principal 

stress of the center of the plate (point E) on the bottom plane.

Material data Elastic modulus

Poisson’s ratio

E = 210 GPa

n = 0.3

Section property Thickness t = 0.01 m

X

Y

A B

CD

E

1

1

30o

150o

150o

30o

Units : m

t = 0.01

simply-supported on all edges
AB, BC, CD and DA

Figure 9.6.1
Skewed plate model
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Table 9.6.1 Maximum principal stress at bottom surface 1Ps -  shell elements

Table 9.6.2 Maximum principal stress at bottom surface 1Ps - solid elements

1
E
Ps [MPa]

Reference 0.802

Number of 

elements per side
2 4 8

Element 

type

TRIA-3 0.804 0.783 0.804

QUAD-4 0.666 0.799 0.799

1
E
Ps [MPa]

Reference 0.802

Number of 

elements per side
2 4 8

Element 

type

PENTA-

6
0.329 0.087 0.251

HEXA-8 0.336 0.675 0.736
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7) Thick Plate

REFERENCE NAFEMS
4

ELEMENTS Solid elements

MODEL FILENAME Element07.mpb

The figure below shows a thick plate with an elliptical inner length and a circular outer length. 

The outer length is fixed in the direction of the plate thickness. The plate experiences a 

uniform pressure of 1MPa on its top surface, and using symmetry conditions, only a quarter 
of the plate was modeled. Element performance may be verified based on the the y-axis 

vertical stress ( D
YYs ) at node D.

Material data Elastic modulus

Poisson’s ratio

E = 210 GPa

n = 0.3

Section property Thickness t = 0.6 m

X

Z
Y

0.6

X

Y

1.252

1

1.75
1

2
2

2

=+÷
ø

ö
ç
è

æ
y

x

1
25.325.3

22

=÷
ø

ö
ç
è

æ
+÷

ø

ö
ç
è

æ yx

Units : m

z displacements fixed along mid-plane

Figure 9.7.1
Thick plate model
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Table 9.7.1 Stress 
YY

s at the point D 

D
YYs [MPa]

Reference 5.38

Number of elements per side 3x2 6x4

Element 

type

PENTA-6 4.878 5.751

HEXA-8 5.321 5.577
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8) Cantilever with Variable Thickness

REFERENCE Young et al
5

ELEMENTS Beam elements, solid elements

MODEL FILENAME Element08.mpb

The figure below shows a cantilever beam whose cross section changes linearly along its 

length. Tension, lateral displacement, and concentrated moment are applied to its right end.

Element performance may be verified using the vertical displacement.

Material data Elastic modulus

Poisson’s ratio

E = 1.0x103 ksi 

n = 0.3

20

3

FY= 50 Kips/in

MX= 3 in-Kips/in

1 

100

A

Y

X

Z

Units : in

Figure 9.8.1
Cantilever model with 
variable thickness
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Table 9.8.1 Displacement Zu subjected to end moment, and Yu subjected to end 

tension at the point A - beam elements

Table 9.8.2 Displacement Zu subjected to end moment, and Yu subjected to end 

tension at the point A - solid elements

Load
A
Zu [in] 

End moment

A
Yu [in]

End tension

Reference 20.0 2.7465

Element type
Number of

elements

BEAM-2 1 20 2.7465

Load
A
Zu [in]

End moment

A
Yu [in]

End tension

Reference 20.0 2.7465

Element type
Number of 

elements

TETRA-4 60 0.27 2.6930

PYRAM-5 30 0.50 2.6931

PENTA-6 (5x3)x1 6.09 2.7031

HEXA-8 5x1 19.95 2.7026
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9) Cylindrical roof

REFERENCE MacNeal
1
, Simo et al.

2

ELEMENTS Shell elements, solid elements

MODEL FILENAME Element09.mpb

The figure below shows a single-span cylindrical roof (Scordelis-Lo roof). Using symmetry 

conditions, only ¼ of the roof is modeled. Self-weight of 360 lbf/ft
3

is applied. The problem is 

to verify element performance by solving for the vertical displacement of point A (the 

midpoint in the direction of element thickness, at the center of the free end).

Material data Elastic modulus

Poisson’s ratio

E = 4.32x108 lbf/ft2

n = 0

X

Y

t = 0.25

40o

50

Weight density (γ) = 
360 lbf/ft3

R = 25

Units : ft

Z

X

Y

40o

50

Weight density (γ) = 
360 lbf/ft3

R = 25

Z A

Figure 9.9.1
Scordelis-Lo barrel 
vault model
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Table 9.9.1 Vertical displacement Zu at the point A - shell elements

Table 9.9.2 Vertical displacement Zu at the point A - solid elements

A
Zu [ft]

Reference -0.3024

Number of elements

per side
4 6 8

Element 

type

TRIA-3 -0.2019 -0.2381 -0.2603

QUAD-4 -03195 -0.3080 -0.3058

A
Zu [ft]

Reference -0.3024

Number of elements

per side
4 6 8

Element 

type

PENTA-6 -0.0163 -0.0228 -0.1326

HEXA-8 -0.3118 -0.3061 -0.3046
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10) Z-Section Cantilever

REFERENCE NAFEMS
4

ELEMENTS Shell elements

MODEL FILENAME Element10.mpb

The figure below shows a z-section cantilever model. The left end is fixed, and and the 

flange of the right end is subject to a uniform vertical load in its shear direction (S = 0.6 MN). 

There is a total torque of 1.2 MN-m exerted. Element performance may be verified using the 

axial stress ( XXs ) at point A.

Material data Elastic modulus

Poisson’s ratio

E = 210 GPa 

n = 0.3

Section property Thickness t = 0.1 m

X
Z

Y

1

2

10

1

2.5

Units : m

S

S

Figure 9.10.1
Z-section cantilever 
model



ANALYSIS REFERENCE Chapter 3. Elements

85 | Section 9. Element Examples

Table 9.10.1 Stress XXs at the point A

A
XXs [MPa]

Reference -108

Element type
Number of 

elements

TRIA-3 48 -30.789

QUAD-4 24 -110.231
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11) Hemisphere under point loads

REFERENCE NAFEM
4

ELEMENTS Shell elements, solid elements

MODEL FILENAME Element11.mpb

The figure below shows how symmetry conditions may be used to model a quarter of a 

hemisphere. There are concentrated loads at points A and B. Element performance may be 

verified by verifying the radial component of displacement at point A.

Material data Elastic modulus

Poisson’s ratio

E = 68.25 Gpa

n = 0.3

Section property Thickness t = 0.04 m 

X

Z

Y

A

B

R = 10

2 kN

2 kN

100222 =++ zyx

Units : m

Figure 9.11.1
Hemisphere quadrant 
model
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Table 9.11.1 Displacement Xu at the point A obtained using shell elements

Table 9.11.2 Displacement Xu at the point A obtained using solid elements

A
Xu [m]

Reference 1.850x10-1

Number of elements per side 4 8

Element 

type

TRIA-3 1.844 x10-1 1.851 x10-1

QUAD-4 1.048x10-1 1.809 x10-1

A
Xu [m]

Reference 1.850x10-1

Number of elements per side 4 8

Element 

type

PENTA-6 9.422x10
-5

3.533x10
-4

HEXA-8 9.995x10-3 1.192x10-1
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12) Square Plate

REFERENCE Zienkiewicz et al
6

ELEMENTS Shell elements, solid elements

MODEL FILENAME Element12_thick.mpb, Element12_thin.mpb

The figure below shows a square plate whose four sides have been fixed. There is a uniform 

pressure of 1Pa being exerted on the plate. Element performance may be verified using the 

displacement at point A (element center). Results should be checked with two different 
thicknesses: 0.001m and 0.1m. Using symmetry conditions, only a quarter of the entire 

structure was modeled.

Material data Elastic modulus

Poisson’s ratio

E = 29.0 kPa (Model A)

E = 29.0 GPa (Model B)

n = 0.3

Section property
Thickness t = 0.1 m (Model A)

t = 0.001 m (Model B)

A

1

1

Uniform Pressure
P = 1 Pa

X

Y

Units : m

Figure 9.12.1
Hemisphere quadrant 
model
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Table 9.12.1 Displacement Zu obtained at the point A -shell elements, t=0.1m

Table 9.12.2 Displacement Zu obtained at the point A - solid elements, t=0.1m

Table 9.12.3 Displacement Zu obtained at the point A - shell elements, t=0.001m

A
Zu [m]

Reference 5.645x10-4

Number of elements 2x2 4x4 8x8

Element type
TRIA-3 5.548x10

-4
5.675x10

-4
5.670x10

-4

QUAD-4 6.145x10-4 5.815x10-4 5.704x10-4

A
Zu [m]

Reference 5.645x10-4

Number of elements 2x2x1 4x4x1 8x8x1

Element type
PENTA-6 2.752x10-4 4.358x10-4 5.169x10-4

HEXA-8 5.355x10-4 5.488x10-4 5.516x10-4

A
Zu [m]

Reference 4.763x10-4

Number of elements 2x2 4x4 8x8

Element type
TRIA-3 4.533x10-4 4.725x10-4 4.759x10-4

QUAD-4 4.562x10-4 4.714x10-4 4.765x10-4
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Table 9.12.4 Displacement Zu obtained at the point A - solid elements, t=0.001m 

A
Zu [m]

Reference 4.763x10-4

Finite element mesh 2x2x1 4x4x1 8x8x1

Element type
PENTA-6 0.005x10

-5
0.021x10

-5
0.080x10

-5

HEXA-8 4.667x10-4 4.735x10-4 4.757x10-4
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13) Cylindrical shell patch test

REFERENCE NAFEMS4

ELEMENTS Shell elements

MODEL FILENAME Element13.mpb

The figure below shows a cylindrical plate model used for an element patch test. There is a 

distributed moment of 1kN-m/m exerted on length DC, and a distributed pressure of 0.6MPa 

being applied in the outwards direction across the entire surface. Element performance may 
be verified using the outward tangential stress at point E.

Material data Elastic modulus

Poisson’s ratio

E = 210 Gpa

n = 0.3

Section property Thickness t = 0.01 m 

A

B

C

D

0.5

r = 1.0

30o
z

A B

CD

E

0.3

0.5

30o

20o

t=0.01

15o

Units : m

Figure 9.13.1
Cylindrical shell patch 
test
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Table 9.13.1 Tangential stress qqs at the point E for load cases 1 and 2

E
qqs [MPa]

Reference 60

Load Case
Edge moment

(Case 1)

Outward pressure

(Case 2)

Element type
Number of 

elements

TRIA-3 (4x2) 43.903 41.083

QUAD-4 4 52.908 68.487
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14) Statically Indeterminate Column

REFERENCE Timoshenko7

ELEMENTS Beam elements, truss elements

MODEL FILENAME Element14.mpb

The figure below shows a statically indeterminate column with both ends fixed. The two 

internal nodes are subject to vertical loads. Element performance may be verified through 

the reaction forces caused by the vertical loading. Both beam and truss elements were used 
in the model.

Material data Elastic modulus

Poisson’s ratio

E = 3.0x107 kgf/m2

n = 0.0

Section property Area A = 1.0 m2

X

Z

3

Units : m

1000 kgf

1

1500 kgf

3

4

B

A

Figure 9.14.1
Column model with 
fixed ends
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Table 9.14.1 Reaction forces ZF at the at the supports 

Reaction A
ZF [kgf] B

ZF [kgf]

Reference 600 900

Element type
Number of 

elements

TRUSS-2 3 600.000 900.000

BEAM-2 3 600.000 900.000
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15) 2-span Continuous Beam

REFERENCE Lausen et al.8

ELEMENTS Beam elements

MODEL FILENAME Element15.mpb

The figure below shows a two-span continuous beam fixed on both ends and hinged 

between the two ends. The left beam is subject to a distributed load, and the right beam is 

subject to a concentrated load at its center. Element performance may be verified using the 
moments at the supports.

Material data Elastic modullus

Poisson’s ratio

E = 4.32x10
6

kips/ft
2

n = 0.0

Section property Moment of inertia
AB : Ix = 0.0201 ft4

BC : Ix = 0.0067 ft4

20

A

X

Z

B
C

5 5

8 kips

1.2 kips/ft

Units : ft

Figure 9.15.1
Continuous beam
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Table 9.15.1 Bending moment YM at the supports

Bending moment A
YM [kips-ft] A

YM [kips-ft] A
YM [kips-ft]

Reference -49.0 -22.0 -4.00

Element 

type

Number of 

elements

BEAM-2 2 -49.0 -22.0 -4.00
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16) Overhanging Beam

REFERENCE Timoshenko7

ELEMENTS Beam elements

MODEL FILENAME Element16.mpb

The figure below shows a beam with overhanging ends and bilateral symmetry. Using the 
bilateral symmetry, the model can only include the beam from its center to the right end. 

There is a distributed load acting on both overhanging ends. Element performance may be 

verified through the displacement caused by the distributed load.

Material data Elastic modullus

Poisson’s ratio

E = 3.0x107 psi

n = 0.0

Section property Moment of inertia Ix = 7892.0 in4

120

X

Z

833.333 lbf/in 833.333 lbf/in

240 120

833.333 lbf/in

120 120

CL

Units : in

Figure 9.16.1
Overhanging beam 
model
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Table 9.16.1 Displaccement zu at the at center

zu [in]

Reference 0.182

Element type
Number of 

elements

BEAM-2 2 0.182
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17) 2-span Frame

REFERENCE AISC9

ELEMENTS Beam elements

MODEL FILENAME Element17.mpb

The figure below shows an in-plane 2-span frame in which the frame members are hinge-

connected. There are two loading cases on the beam, as shown below. Model performance 

may be verified using the left beam (beam A)’s shear force and moment.

Material data Elastic modulus

Poisson’s ratio

E = 3.0x103 kips/in2

n = 0.0

Section property

Area

Moment of inertial (Columns)

Moment of inertial (Beams)

A = 1.0 x107 in2

Ix = 1.3824 x10
4

in
4

Ix = 2.7000 x104 in4

X

Z

18 18

: Pinned joint (release Ry)

A

10
Units : ft

Case 2

Case 1

50 kips 50 kips

100 kips 100 kips 100 kips

10 kips/ft

9 9 9 9

Figure 9.17.1
Plane frame model
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Table 9.17.1 Bending moment YM and Shear forces ZQ of element A for Case 1

Table 9.17.2 Bending moment YM and Shear forces ZQ of element A for Case 2

Location
YM [kip-in] ZQ [kip]

Reference

0.00L 0.00 -31.25

0.25L 1687.50 -31.25

0.50L 3375.00 68.75

0.75L -337.50 68.75

1.00L -4050.00 68.75

Element type

BEAM-2

0.00L 0.00 -31.25

0.25L 1687.50 -31.25

0.50L 3375.00 68.75

0.75L -337.50 68.75

1.00L -4050.00 68.75

Location
YM [kip-in] ZQ [kip]

Reference

0.00L 0.00 -67.50

0.25L 2430.00 -22.50

0.50L 2430.00 22.50

0.75L 0.00 67.50

1.00L -4860.00 112.50

Element type

BEAM-2

0.00L 0.00 -67.50

0.25L 2430.00 -22.50

0.50L 2430.00 22.50

0.75L 0.00 67.50

1.00L -4860.00 112.50
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18) Elastic Supports

REFERENCE Beaufait. W., et al.10

ELEMENTS Beam elements

MODEL FILENAME Element18.mpb

The figure below shows an in-plane frame model with elastic support conditions. There are 

concentrated loads exerted on both the column and beam. The column is connected to the 

beam with a pinned joint. Model performance may be verified with the displacement and 
rotation at each of the beam’s nodes (A, B, and C).

Material data Elastic modullus

Poisson’s ratio

E = 4.32x106 kips/ft2

n = 0.0

Section property

Area (Beam)

Area (Column)

Moment of inertia (Beam)

Moment of inertia (Column)

Spring constant

A = 0.125 ft2

A = 0.175 ft2

Ix = 0.263 ft
4

Ix = 0.193 ft4

K = 1200 kips/ft

X

Z

24

: Pinned joint (release Ry)

A

12Units : ft

B C

30

15 kips

1515

6

6

5 kips

Figure 9.18.1
Beam with elastic 
supports model
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Table 9.18.1 Displacement Xu at the points (A, B, C)

Table 9.18.2 Displacement Zu at the points (A, B, C)

Table 9.18.3 Rotation Yq at the points (A, B, C)

Displacement A
Xu [ft] B

Xu [ft] C
Xu [ft]

Reference 1.079 x10-3
1.079 x10-3

1.079 x10-3

Element type

BEAM-2 1.079 x10-3
1.079 x10-3

1.079 x10-3

Displacement A
Zu [ft] B

Zu [ft] C
Zu [ft]

Reference 1.787 x10-3
-0.180 x10-3

-4.820 x10-3

Element type

BEAM-2 1.787 x10-3
-0.180 x10-3

-4.820 x10-3

Rotation A
Yq [rad] B

Yq [rad] C
Yq [rad]

Reference -0.099 x10-3
0.444 x10-3

-0.361 x10-3

Element type

BEAM-2 -0.099 x10-3
0.444 x10-3

-0.361 x10-3
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Properties of Elastic Materials

Elastic materials return to their original shape (i.e. without residual displacement) after external loads 

are removed. Midas nGen allows for the use of either linear elastic material models or nonlinear elastic 

material models. An explanation of each model follows. Table 4.1.1 summarizes the material types 

that may be applied to the different elements in Midas nGen.

Material Type

요소 종류

Truss/Elastic 

Link/Spring
Beam Shell Solid

Linear Elastic Isotropic ∨ ∨ ∨ ∨

Nonlinear Elastic (1D) ∨

Isotropic materials maintain the same properties along an arbitrary direction. Linear elastic isotropic 

materials, whose properties are based on Hooke’s law, may be applied to all element types in midas 

nGen (except for a few exceptions). Stress-strain relationships of an isotropic material that maintains 

equal properties in all three directions may be expressed in terms of elastic moudulus E , Poission 

ratio n , and coefficient of thermal expansion a . This relationship is shown below.

Section 1

Table 4.1.1  Elastic material 

types that may be applied to 

different elements

1.1
Isotropic Materials
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(4.1.1)

For 2-dimensional analysis, 0yz zx yz zxt t g g= = = = , and for plane strain analyses, 0zze = . 

Incorporating these properties, 2-dimensional stress-train relationship may be expressed as the 

following:

2 2
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                                     (4.1.2)

The stress-strain relationship for lateral shear is as follows.

0

0

zx zx

zy zy

G

G

t g

t g

ì ü ì üé ùï ï ï ï
=í ý í ýê ú

ï ï ï ïë ûî þ î þ
                        (4.1.3)

Isotropic materials may be defined by two material constants. The two may be selected from E, G , 

n . The third is defined based on the relationship shown below.

2(1 )

E
G

n
=

+
                                                                       

(4.1.4)
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To ensure physical stability of isotropic materials, the Poisson ratio must defined to be within the 

boundaries shown below:

1.0 0.5n- < <                                                                     (4.1.5)

Midas nGen provides the following nonlinear elastic behavior models for truss elements, for the 

convenience of the user.

► Compression-only behavior

► Gap behavior

► Tension-only behavior

► Hook behavior

e

s

allowable 

tension stress

         

e

s

gap strain

(a) Compression-only behavior                                           (b) Gap behavior

e

s

allowable 
compression 

stress

e

s

hook strain

1.2
Nonlinear elastic 
behavior of truss 
elements

Figure 4.1.1 Nonlinear elastic 

models for truss elements



Chapter 4. Materials

96 | Section 1. Properties of Elastic Materials

ANALYSIS REFERENCE

(c) Tension-only behavior                                          (d) Hook behavior

Gap and hook models are defined by units of length. Gap strains and hook strains are calculated 

based on the element’s initial length.

Midas nGen provides the following models for elastic link/spring elements:

► General behavior

► Tension only behavior

► Compression only behavior

Tension and compression only behavior models are defined similar to the nonlinear material behaviors 

defined for truss elements in Section 1.2. Truss element behaviors are expressed as a function of 

stress and strain, but elastic link and spring elements do not have cross section properties. Thus, the 

behaviors are expressed as a function of force and displacement, as shown below in Figure 4.1.2.

dD

P

compression

allowable 

tension

      

tension

P

dD

allowable 
compression

                   (a) Compression-only                      (b)Tension-only

In figure 4.1.2, dD refers to the relative displacement between the nodes, and P represents the 

internal force of the member. Resistance in compression-only and tension-only behavior models may 

only applied to spring elements.

1.5stic Link  

비선형

탄성거동

1.3
Nonlinear elastic 
behavior of elastic 
link/spring elements

Figure 4.1.2 Compression 

only and tension only 

behavior for elastic link 
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Material Examples
1) Axial Motion of an Elastic Link Element

REFERENCE Gere
1

ELEMENTS Elastic link element, Beam elements

MODEL FILENAME Material1.mpb

The figure below shows an elastic link connecting two fixed-end beams. The right end of the 
elastic link is subject to a force of 100N. The model and material setup may be verified by 
the reaction at point A, using either tension only or compression only material properties.

Material data Young’s modulus E = 10.0 GPA

Link property Stiffness 2.00x10
7

N/m
2

Table 2.1.1 X directional reaction at the prescribed point A

5

100 N

1 5

Units : N, m

0.1

0.1A

X

Y

Section 2

Figure 2.1.1
Axial beam with elastic 
link

Reaction [N]

Link Type Result Reference

Tension Only -66.667 -66.667

Compression Only -100.000 -100.000
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2) Behavior of a Truss Structure with Brace

REFERENCE None

ELEMENTS Truss element, Beam elements

MODEL FILENAME Material2.mpb

The figure below shows truss structures with and without a brace. There is a nodal load 
exerted on the structure, in the leftward direction. The truss-element forming the brace 
exhibits compression-only behavior. Model setup may be verified by comparing the x-
displacement at point A, for both the structure with and without the brace. In this loading 
case, the brace experiences tension. Thus, using a compression-only brace in the structure 
should yield the same results as the structure without a brace.

Material data Young’s modulus E = 210.0 GPA

Table 2.2.1 x-displacement at the prescribed point A

4

4

1

100 N

5

4

100 N

Units : N, m

0.1

0.1

A A

X

Y

Figure 2.2.1
Truss structure with or 
without brace

Displacement

Truss Type With Brace Without Brace

-1.31278E-005 -1.31278E-005
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3) Behavior of a Point Spring Element

REFERENCE Gere
1

ELEMENTS Beam element, Point spring

MODEL FILENAME Material3.mpb

The figure below shows a beam with a fixed right end. On its left is a compression-only point 
spring that allows for some tension. The beam’s left end is subject to an external force of 
100N. Model setup may be verified using the axial force of the beam and spring elements.

Material data Young’s modulus E = 10.0 GPA

Spring Property Stiffness

Allowable tension

1.0x107 N/m2

30N

Table 2.3.1 Axial forces of the beam and spring elements

100 N

Units : N, m

0.1

0.1

A

Compression-Only 
Point Spring

X

Y
Figure 2.3.1
Beam element with 
point spring

Displacement

Element Type Result Reference

Spring element 30N 30N

Beam element 70N 70N
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System of Equations Solver

The System of Equations Solver finds the solution u to matrix problems of the form shown in 

Equation 5.1.1:

Ku = p (5.1.1)

The Solver is not only used in linear static analysis, but also other analysis methods including but not 

limited to eigenvalue analysis, dynamic analysis, and nonlinear anslysis. The Solver includes the 

typical Gaussian Elimination method for solving the system of simultaneous equations. Additionally, it 

includes an iterative solver that minimizes error through a direct solver based on LU decomposition.

Direct solvers are not influenced by the numerical irregularities of the matrix and can arrive at a stable 

solution. Thus, they are used frequently in structural analysis. However, if the matrix becomes too 

large, then the number of iterations and the computational time per iteration can increase 

exponentially. Consequently, for such matrix, the use of an iterative solver that relies on relatively less 

memory is recommended. One must also remain cautious of possible numerical irregularities in 

structural analysis problems. Such irregularities may not allow one to arrive at a desired solution 

through an iterative solver, or the number of iterations required to arrive at such a solution may 

become too large. Midas nGen allows for automated selection of direct and iterative solvers based on 

the nature and size of the problem.

In the direct solver, a solution to a system of simultaneous equations is found through two steps. The 

first step is matrix decomposition, and the second step is forward-backward substitution (FBS). LU

Section 1
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decomposition—usually applied to asymmetrical matrices—can be modified for the symmetric stiffness 

matrix K that forms the basis of finite element analyses:

T =LL u p   or  T =LDL u p                                 (5.1.2)

L : Lower Triangular Matrix

D : Diagonal Matrix

Typically, matrix decomposition methods that involve D are required in which the stiffness matrix is 

not positive definite. In midas nGen, linear static analyses rely on TLL -type matrix decomposition 

(Cholesky decomposition method). For eigenvalue or nonlinear analyses, the positive definiteness of 

the stiffness matrix is not guaranteed and thus TLDL -type decomposition methods are used instead.

When direct solvers are applied, it is important to be cognizant of matrix sparsity. Typically, the 

stiffness matrix K that arises from finite element analysis includes many zeros and is thus a sparse 

matrix. This characteristic is an important one, as the different ways that solvers utilize matrix sparsity 

can cause a noticeable difference in required memory and computational complexity. As a result, 

midas nGen does not simply rely on direct solvers that are often used for dense matrices (and thus do 

not manipulate matrix sparsity). Instead, the default solver is a multi-frontal solver that utilizes matrix 

sparsity to optimize computational complexity and required memory space.

In multi-frontal solvers, the minimization of problem complexity and memory through manipulation of 

matrix sparsity requires reordering of the degrees of freedom. The reordered DOFs are then 

decomposed and used in various frontal solvers. Equation 5.1.1 is a schematic representation of 

efficient calculation processes via rectangular component networks formed by DOF reordering. DOF 

reordering is realized through an algorithm called recursive bisection; the forward substitute sequence 

is the same as matrix decomposition, and backwards substitution is done in the reverse order.
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The multi-frontal solver used in midas nGen does not build and save the complete stiffness matrix, and 

as a result uses less memory compared to typical multi-frontal solvers. For larger problems where 

more memory may be needed, the out-of-core analysis capability allows the software to automatically 

use additional hard disk memory to complete the computations.

Moreover, for the purpose of realizing the multi-frontal solver method, midas nGen takes full 

advantages of the computational abilities of the graphics processing unit (GPU). Recently there has 

been increased demand in large problems and thus an increased focus on the importance of th 

efficiency of finite element methods, which serves as the centerpiece of structural analysis. GPU’s are 

made of many core units, and thus provide improved computational abilities compared to CPU’s.

Iterative solvers reduce the error in the approximate solution through multiple iterations, and thus it is 

important to induce convergence and reduce error using the smallest number of iterations and lowest 

computation time. Typically, the number of iterations is defined by the preconditioning technique. In 

1                     2            1          4          1            2                       1

1                     2            1                     1            2                       1

3 3

Figure 5.1.1 Example 

sequence for matrix 

decomposition used in multi-
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midas nGen, one of two stable preconditioning techniques are used regardless of the element. They 

are the SA (smoothed aggregation) and AMG (algebraic multi-grid) 1 methods.

The AMG method uses multi-grids, so the number of iterations is not largely affected by the number of 

degrees of freedom. It shows stable convergence even for elements where each node has 

translational and rotational degrees of freedom (e.g. shell elements). Iterative solvers that use the 

AMG method automatically define multi-grids, which are created based on the set of adjacent nodes 

and the degrees of freedom that represent the said set of nodes. Figure 5.1.2 shows a sample set of 

nodes that define a multi-grid.

As previously explained, the performance of direct and iterative solvers depends on the size of the 

problem, and to help on this end, midas nGen offers the capability to automatically decide between the 

two. For small-sized problems, the direct solver is used as it relies on dense matrices. Moderately-

sized problems use the multi-frontal solver and large problems use the AMG iterative solver.

The automated selection criteria consider the following:

► In cases where conditions are known from experience: Automation is based on the number of 

elements/nodes input by the user

                                                                   
1 
Vanek, P., Mandel, J. and Bresina, M.,”Algebraic Multigrid by Smoothed Aggregation for Second and Fourth 

order Elliptic Problems,” Computing, Vol. 56, 1996

Figure 5.1.2 A set of nodes 

that define a multi-grid
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► In cases where conditions are not known from experienced: Automation is based on the number of 

degrees of freedom in the model and system memory size
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Eigenvalue Extraction

Eigenvalue extraction is the core algorithm of all normal mode analysis and buckling analysis. 

Eigenvalue extraction takes the form of the equation shown below:

(no summation)i i if l f- =K B 0      (5.2.1)

K : Stiffness matrix

B

: All analyses – Mass matrix ( M )

: Buckling analysis – Geometric stiffness

matrix (
gK )

The buckling analysis mode of midas nGen software allows for the use of a steady stiffness matrix 

and/or geometric stiffness matrix. Thus, eigenvalue extraction is divided into loading sets:

( ) ( ) (no sum m ation  for )n n m m
g i i g i ia f l a f+ - =å åK K K 0      (5.2.2)

na
: Loading set geometric stiffness contribution factor that is added to the steady 

stiffness matrix

ma
: Loading set geometric stiffness contribution factor that increases as a 

function of the buckling coefficient

In midas nGen, the eigenvalue extraction method is linked to and changes based on the method of 

solving simultaneous equations. The default method for the simultaneous equation solver uses the 

Lanczos iterative method. If a dense matrix method is selected, then eigenvalue extraction also uses a 

direct approach using dense matrices. Each method has the following characteristics.

Section 2

2.1
Eigenvalue 

Extraction Methods
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• Lanczos Iterative Method

► Appropriate for large problems

► Some eigenvalues may be omitted, so it is recommended that the Sturm sequence check option is 

used.

• Direct approach using dense matrices

► If the number of degrees of freedom is on the order of 
310 , then performance may worsen 

significantly. Thus, this method is appropriate for small problems.

► Eigenvalues are not omitted.

The Lanczos iterative method2 calculates approximate eigenvalues using the tridiagonal matrix that is 

created in the process of defining the Krylov subspace 1, 2( ,..., )kspan V V V . Block tridiagonal matrices 

are used for effective eigenvalue analysis, and the standard of the number of eigenvalues are similar

kept to the size of the tridiagonal matrix. Thus, this method takes little computational time and is 

appropriate for large problems. However, some eigenvalues may be omitted and thus it is 

recommended that the user select an option that checks for missing eigenvalues.

The direct approach using dense matrices undergoes matrix decomposition, definition of tridiagonal 

matrices, and eigenvalue calculation procedures. Eigenvalue computation and tridiagonal matrix 

creation is based on the complete model matrix. Thus, this approach does not omit eigenvalues but is 

not appropriate for large problems.

Calculation Range for Eigenvalues

Typically, in modal analysis, the number of eigenvalues and range can be defined based on the modal 

participation factor (Equation 5.3.1) or modal effective mass (Equation 5.3.3). It may also be defined 

                                                                   
2 Hughes, T.J.R., The Finite Element Method, Prentice-Hall International, Inc., New Jersey, 1987
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based on the frequency range of interest. If the number of eigenvalues and the range is defined based 

on these factors, then they may follow the user input options shown in the table below.

Definition of Variables ( 1v , 2v , N Input or no 

input)

Range of Eigenvalues Number of 

Eigenvalues

1v , 2v , N 1 2v v v< < At most N

eigenvalues

1v , no input, N 1v v< At most N

eigenvalues

No input, 2v , N 2v v< At most N

eigenvalues

No input, no input, N v-¥ < <¥ At most N

eigenvalues

1v , 2v , no input 1 2v v v< < All eigenvalues

1v , no input, no input 1v v< All eigenvalues

No input, 2v , no input 2v v< All eigenvalues

No input, no input, no input v-¥ < <¥ All eigenvalues

For the inputs shown above, 1v , 2v are frequencies in Hz.

Eigenvalue Calculation Result

Eigenvector, which is the result of eigenvalue analysis, satisfies Equation 5.2.1 regardless of any 

changes in size.

( )i i i i i i

i i

a

a

f l f j l j

j f

- = - =

=

K B K B 0
(5.2.3)

Table 5.2.1 Number of 

eigenvalues and definition of 

the range for calculation
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Therefore, it is necessary to express the size of the calculated eigenvector in a consistent manner.

Midas nGen applies eigenvector normalization in the following form, which must be satisfied for all 

different analysis types:

1T
i if f =M (5.2.4)

Even when solution is based on the direct approach using dense matrices, the eigenvalue calculation 

algorithm only returns approximate values and thus the accuracy cannot be guaranteed. Midas nGen

adopts the following eigenvalue results to check the accuracy of the calculated eigenvalues and 

eigenvectors.

Result Calculation

Generalized mass T
i i ib f f= B

Generalized stiffness T
i i ik f f= K

Orthogonality loss 1 1max( , )
T T
i i i i

i

i ik b

f f f f
d - -=

K B

Error measure
i i i

i

i

e
f l f

f

-
=
K B

K

In all analysis, the number of extracted eigenvalues may be decided based on how many eigenvalues 

are required to satisfy a specified mass participation factor (typically 80-90%, internally set at 90%). 

Midas nGen offers the ability to automatically minimize the number of eigenvalues to satisfy the mass 

participation factor of the selected degrees of freedom (for more information on mass participation 

factors, please refer to Section 3) by incrementally adding to the number of eigenvalues. Additional 

eigenvalues are solved by recycling the decomposed stiffness matrix and can be more efficient that 

manual repetition. The default number of eigenvalues is set at the user-specified number of modes.

Using the ratio of the number of additional eigenvalues that were computed to the incremental 

increase in the mass participation factor, the number of modes is increased and computation is 

repeated until the mass participation factor tolerance is satisfied.

Table 5.2.2 Results of 

numerical results other than 

eigenvalues and eigenvectors

2.2
Automatic 

Extraction
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1=
i

i

i

P
N

N
+

D
D

D
     (5.2.5)

1iN +D : Number of additional eigenvalues that were computed

iND
: Number of additional eigenvalues that were computed in the previous 

computation

iPD
: The incremental increase in the mass participation factor (in the direction 

of the selected degree of freedom) in the previous computation

When using this method, eigenvalues are found in iterated calculations, so there are no additional 

calculations for computing omitted eigenvalues. The default number of eigenvalues is the user-

specified number of modes. In the case in which the default value is too low, the software then finds 

additional eigenvalues. If the default number of modes is selected with consideration of the number of 

degrees of freedom, model size, and other characteristics, then the eigenvalue extraction process 

would proceed in a much more efficient manner.

Additional Items

1. When the dense matrix solver method is being used, then all possible modes are computed at once, 

and the minimum number of eigenvalues required to satisfy mass participation factors are computed.

2. The limit on the mass participation factor, which serves as a base for seismic analysis, does not 

include restrained masses.

3. If the target mass participation factor is too close to the mass participation factor when using all 

modes, then the calculation may become too inefficient. Thus, midas nGen provides a warning 

message and automatically reduce the target mass participation factor before proceeding with further 

computations.
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1) Pin-ended cross model

REFERENCE NAFEMS
1

ELEMENTS Beam elements
MODEL FILENAME Eigen01.mpb

The figure below shows four beams crossing one another. The ends of these beams are 

pinned. 

Material data Elastic modulus

Mass density

E = 200 GPa
r= 8000 kg/m3

Section property Square cross-section 0.125 m x 0.125 m

Mass option Coupled mass

Y

X

5 5

5

5

0.125

0.125

Units : m

2.3
Modal Analysis 

Examples

Figure 2.3.1.1
Pin-ended cross model
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Table 2.3.1.1 Natural frequencies in Hz obtained using beam elements

Mode 1 Mode 2&3 Mode 4

Mode 5 Mode 6&7 Mode 8

Figure 2.3.1.2
Vibration mode shapes

Mode Number 1 2, 3 4 5 6, 7 8

Reference 11.336 17.709 17.709 45.345 57.390 57.390

Element 

type

Number of 

elements

Beam-2 4 per arm 11.336 17.687 17.716 45.486 57.382 57.702
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2) Square Frame

REFERENCE NAFEMS
1

ELEMENTS Beam elements
MODEL FILENAME Eigen02.mpb

The figure below shows a 2-dimensional square frame model without any fixities. Each side 

is modeled with four beam elements. Three rigid body modes have been omitted, and 

results for modes 4 through 11 are shown below.

Material data Elastic modulus

Poisson’s ratio

Mass density

E = 200 MPa

n = 0.3
r= 8000 kg/m

3

Section property
Area, shear area

Moment of inertia

A = As = 0.0625 m2

Ix =Iy = 0.000326 m4

Mass option Coupled mass

Y

X

10

10
0.25

0.25

Units : m

Figure 2.3.2.1
Free square frame 
model
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Table 2.3.2.1  Natural frequencies in Hz obtained using beam elements

Figure 2.3.2.2
Vibration mode shapes

Mode Number 4 5 6,7 8 9 10,11

Reference 3.261 5.668 11.136 12.849 24.570 28.695

Element 

type

Number of 

elements

Beam-2 4 per arm 3.262 5.666 11.135 12.802 24.628 28.720
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3) Cantilever with Off-Center Point Masses

REFERENCE NAFEMS
2

ELEMENTS Beam elements
MODEL FILENAME Eigen03.mpb

The figure below shows a model with two concentrated masses at some distance from the 

free end of a cantilever beam.

Material data Elastic modulus

Poisson’s ratio

Mass density

E = 200 GPa

n = 0.3
r= 8000 kg/m3

Section property Circular cross-section R = 0. 25 m

Mass option Coupled mass

Y

X

10

Units : m

2

2

0.5

M1

M2

M1 = 10000 kg (along X, Y, Z)
M2 = 1000 kg (along X, Y, Z)

Figure 2.3.3.1
Cantilever with off-
center point masses 
model
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Table 2.3.3.1 Natural frequencies in Hz obtained using beam elements

Mode 4 Mode 5 Mode 6

Mode 4 Mode 5 Mode 6

Y

X X

Z
Y

X

Z
Y

Y

X

Y

X
X

Z
Y

Figure 2.3.3.2
Vibration mode shapes

Mode Number 1 2, 3 4 5 6, 7 8

Reference 11.336 17.709 17.709 45.345 57.390 57.390

Element 

type

Number of 

elements

Beam-2 5 11.338 17.689 17.717 45.483 57.371 57.690
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4) Deep Beam

REFERENCE NAFEMS
2

ELEMENTS Beam elements, solid elements
MODEL FILENAME Eigen04.mpb

The figure below shows a simply-supported deep beam. It must be modeled carefully with 

consideration of the boundary conditions in order to incorporate three-dimensional mode 

shapes.

Material data Elastic modulus

Poisson’s ratio

Mass density

E = 200 GPa

n = 0.3

r= 8000 kg/m3

Section property Square cross-section 2.0 m x 2.0 m

Mass option Coupled mass

Table 2.3.4.1 Natural frequencies in Hz obtained using beam elements

10

Units : m

2

2
X

Z

Y

x = y = z = RX = 0 at A, y = z = 0 at B

A B

Figure 2.3.4.1
Deep simply-supported 
beam model

Mode Number 1, 2 3 4 5, 6 7 8, 9

Reference 42.649 77.542 125.00 148.31 233.10 284.55

Element 

type

Number of 

elements

Beam-2 5 42.675 77.841 125.51 150.43 241.24 300.10
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Table 2.3.4.1 Natural frequencies in Hz obtained using solid elements

Mode 1&2 Mode 3 Mode 4

Mode 5&6 Mode 7 Mode 8&9

Y

X

Y

X

Y

X
FLEXURAL TORSIONAL EXTENSIONAL

Y

X

Y

X

Y

X

FLEXURAL TORSIONAL FLEXURAL

Figure 2.3.4.2
Vibration mode shapes

Mode Number 1 2 3 4 5

Reference 38.200 85.210 152.23 245.53 297.05

Element 

type

Number of 

elements

TETRA-4 282 46.381 95.982 179.77 292.81 325.68

PENTA-6 60 39.317 85.659 158.54 264.38 298.68

HEXA-8 10x1x3 38.277 83.952 157.57 264.92 298.33
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5) Circular Ring

REFERENCE NAFEMS
1

ELEMENTS Beam elements
MODEL FILENAME Eigen05.mpb

The figure below shows a circular ring with no fixities. Six rigid body modes were omitted, 

and the results below shows modes 7 through 18.

Material data Elastic modulus

Poisson’s ratio

Mass density

E = 200 GPa

n = 0.3
r= 8000 kg/m

3

Section property Circular cross-section R = 0.05 m

Mass option Coupled mass

Units : m

Z

X

Y

1
0.1

Figure 2.3.5.1
Circular ring model
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Table 2.3.5.1 Natural frequencies in Hz obtained using beam elements

Mode 7&8 Mode 9&10 Mode 11&12

Mode 13&14 Mode 15&16 Mode 17&18

OUT OF PLANE IN PLANE OUT OF PLANE

IN PLANE OUT OF PLANE IN PLANE

Figure 2.3.5.2
Mode shapes of 
vibration

Mode Number 7, 8 9, 10 11, 12 13, 14 15, 16 17, 18

Reference 51.849 53.382 148.77 150.99 286.98 289.51

Element 

type

Number of 

elements

Beam-2 20 52.213 53.777 148.93 151.27 285.38 288.19
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6) Thin Square Cantilever Plate

REFERENCE NAFEMS
1

ELEMENTS Shell elements, solid elements
MODEL FILENAME Eigen06.mpb

The figure below shows a square cantilever plate whose left end has been fixed. Using 

symmetry conditions, only the bottom half has been modeled. Based on the restraint 

conditions on the symmetry boundary, Case A exhibits only symmetrical mode shapes and 
Case B exhibits only asymmetrical mode shapes.

Material data Elastic modulus

Poisson’s ratio

Mass density

E = 200 GPa

n = 0.3
r= 8000 kg/m3

Section property Thickness t = 0.05 m

Mass option Coupled mass

Units : m

Y

X

10

t = 0.05

10 CL

Z

x = y = Rz = 0 at all nodes,
z = Ry = Rx = 0 along y-axis

x = y = Rz = 0 at all nodes,
z = Ry = Rx = 0 along y-axis, Rx = 0 along y = 5m

case A

case B

Figure 2.3.6.1
Thin square cantilever 
plate model
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Table 2.3.6.1 Natural frequencies in Hz obtained using shell elements – Case A

Table 2.3.6.2 Natural frequencies in Hz obtained using solid elements – Case A

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

CLCLCL

CL CL CL

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

CLCLCL

CL CL CL

Figure 2.3.6.2
Vibration mode shapes
(Case A)

Figure 2.3.6.3
Vibration mode shapes
(Case B)

Mode Number 1 2 3 4 5 6

Reference 0.421 2.582 3.306 6.555 7.381 11.402

Element 

type

Number of 

elements

TRIA-3 64 0.418 2.623 3.362 6.931 7.963 13.160

QUAD-4 8x4 0.418 2.615 3.337 6.752 7.905 12.681
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Table 2.3.6.3 Natural frequencies in Hz obtained using shell elements – Case B

Table 2.3.6.4 Natural frequencies in Hz obtained using solid elements – Case B

Mode Number 1 2 3 4 5 6

Reference 0.421 2.582 3.306 6.555 7.381 11.402

Element 

type

Number of 

elements

HEXA-8 8x4x1 0.419 2.656 3.353 6.747 8.251 12.654

Mode Number 1 2 3 4 5 6

Reference 1.029 3.753 7.730 8.561 N/A N/A

Element 

type

Number of 

elements

TRIA-3 64 1.027 3.841 8.263 9.303 12.417 18.118

QUAD-4 8x4 1.026 3.807 8.220 9.194 11.974 18.004

Mode Number 1 2 3 4 5 6

Reference 1.029 3.753 7.730 8.561 N/A N/A

Element 

type

Number of 

elements

HEXA-8 8x4x1 1.029 3.840 8.356 9.416 11.977 18.248
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7) Thin Square Cantilever Plate – Unbalanced 

Mesh

REFERENCE NAFEMS
1

ELEMENTS Shell elements
MODEL FILENAME Eigen07.mpb

The figure below shows a thin square cantilever plate. This model serves to show how the 

response of the model changes as the mesh becomes unbalanced.

Material data Elastic modulus

Poisson’s ratio

Mass density

E = 200 GPa

n = 0.3
r= 8000 kg/m3

Section property Thickness t = 0.05 m

Mass option Coupled mass

Y

X

10

10

Test 1 Test 2

Units : m

Cantilevered

Figure 2.3.7.1
Thin square cantilever 
plate model
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Table 2.3.7.1 Natural frequencies in Hz obtained using shell elements

* obtained using shell element formulations with 6-dof per node.

Mode Number 1 2 3 4 5 6

Reference 0.421 1.029 2.582 3.306 3.753 6.555

Element 

type
Mesh

QUAD-4

Regular
0.418

0.417*

1.044

1.009*

2.756

2.666*

3.505

3.465*

4.199

3.829*

7.483

6.870*

Distorted
0.418

0.417*

1.043

1.007*

2.789

2.679*

3.539

3.485*

4.192

3.857*

7.515

6.965*
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8) Simply-Supported Thick Square Plate

REFERENCE NAFEMS
1

ELEMENTS Shell elements
MODEL FILENAME Eigen08.mpb

The figure below shows a thick square plate whose four sides are simply-supported. Case A 

has additional constraints: the model boundaries parallel to the x-axis have rotation 

restraints about the x-axis and the boundaries parallel to the y-axis have rotation restraints 
about the y-axis.

Material data Elastic modulus

Poisson’s ratio

Mass density

E = 200 GPa

n = 0.3
r= 8000 kg/m3

Section property Thickness t = 1 m

Mass option Coupled mass

Y

X

10

Units : m

t = 1

10

Z

x = y = Rz = 0 at all nodes,
z = 0 along all 4 edges

x = y = Rz = 0 at all nodes,
z = 0 along all 4 edges
Rx = 0 along Y-axis at x=0,10
Ry = 0 along X-axis at y=0,10

case A

case B

Figure 2.3.8.1
Simply-supported thick 
square plate model
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Table 2.3.8.1 Natural frequencies in Hz obtained using shell elements

* QUAD-4 has additional 3by3 mode shape between 8 and 9th modes.

Mode 1 Mode 2&3 Mode 4

Mode 5&6 Mode 7&8 Mode 9&10

Figure 2.3.8.2
Vibration mode shapes

Mode Number 1 2,3 4 5,6 7,8 9,10

Reference 45.897 109.44 167.89 204.51 256.50 336.62

Element 

type

Number of 

elements

BC

type

TRIA-3 128

A 47.386 117.76 188.58 233.57 305.04 394.14

B 46.215 116.00 184.46
231.42, 

231.90
299.70 392.87

QUAD-

4
8x8

A 46.493 114.46 176.33 226.93 280.64 383.73

B 45.128 112.60 172.20
225.22, 

225.45
276.10 382.57



Chapter 5. Algorithm

128 | Section 2. Eigenvalue Extraction

ANALYSIS REFERENCE

9) Cantilevered Square Membrane

REFERENCE NAFEMS
1

ELEMENTS Shell elements
MODEL FILENAME Eigen9.mpb

The figure below shows a cantileverd square membrane whose left end has been fixed. 

Displacement in the z-direction is restrained, and thus the resulting mode shapes are purely 

in-plane.

Material data Elastic modulus

Poisson’s ratio

Mass density

E = 200 GPa

n = 0.3
r= 8000 kg/m3

Section property Thickness t = 0.05 m

Mass option Coupled mass

Y

X

10
Units : m

10

Z

z = 0 at all nodes
x = y = 0 along y-axis

Figure 2.3.9.1
Cantiilevered square 
membrane model
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Table 2.3.9.1 Natural frequencies in Hz obtained using shell elements

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Figure 2.3.9.2
Vibration mode shapes

Mode Number 1 2 3 4 5 6

Reference 52.404 125.69 140.78 222.54 241.41 255.74

Element 

type

Number of 

elements

TRIA-3 128 53.788 126.28 144.45 234.70 249.57 263.48

QUAD-4 8x8 52.726 126.06 142.76 226.95 247.22 259.43
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10) Cantilevered Tapered Membrane

REFERENCE NAFEMS
2

ELEMENTS Shell elements
MODEL FILENAME Eigen10.mpb

The figure below shows a cantilever beam whose cross section is rotated by 90 degrees at 

its free end. The left end is fixed. There are unit loads exerted in all directions at the right 

end. The in-plane/out-of-plane motion may be verified through the displacement at the 
loading point.

Material data Elastic modulus

Poisson’s ratio

Mass density

E = 200 GPa

n = 0.3
r= 8000 kg/m3

Section property Thickness t = 0.05 m

Mass option Coupled mass

10

2.5
Y

X

Z
1.0

Units : m
z = 0 at all nodes
x = y = 0 along y-axis

Figure 2.3.10.1
Cantilevered tapered
membrane model
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Table 2.3.10.1 Natural frequencies in Hz obtained using shell elements

* obtained using shell element formulations with 6-dof per node.

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Figure 2.3.10.2
Mode shapes of 
vibration

Mode Number 1 2 3 4 5 6

Reference 44.623 130.03 162.70 246.05 379.90 391.44

Element 

type

Number of 

elements

TRIA-3 256
45.643

44.725*

134.53

130.60*

162.92

162.89*

258.37

247.94*

393.48

384.41*

404.95

393.13*

QUAD-4 16x8
44.647

44.628*

131.04

130.20*

162.80

162.72*

250.33

246.82*

391.54

382.03*

393.10

392.84*
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11) Cantilever Beam with Irregular Mesh

REFERENCE NAFEMS
1

ELEMENTS Beam elements
MODEL FILENAME Eigen11.mpb

The figure below shows a 2-dimensional cantilever beam whose left end is fixed. In the

figure, a and b signify the lengths of each beam element. The modal analysis will give 

different results depending on the ratio of length a to b.

Material data Elastic modulus

Mass density

E = 200 GPa

r= 8000 kg/m3

Section property Square cross-section 0.125 m X 0.125 m

Mass option Coupled mass

10

Units : m

A

0.125

0.125
X

Y

aa a b b b b a

x = y = Rz = 0 at A

Figure 2.3.11.1
Cantilever beam model
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Table 2.3.11.1 Natural frequencies in Hz obtained using beam elements

Mode Number 1 2 3 4 5 6

Reference 1.010 6.327 17.716 34.717 57.390 85.730

Element 

type

Length 

ratio

Beam-2

a = b 1.010 6.323 17.698 34.694 57.470 86.230

a = 10b 1.010 6.327 17.796 34.873 60.626 101.694

a = 100b 1.010 6.330 17.824 35.080 64.766 104.671
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12) Cylindrical Shell with Rigid Diaphgrams

REFERENCE Soedel
3

ELEMENTS Shell elements
MODEL FILENAME Eigen12.mpb

The figure below shows a cylindrical shell with rigid diaphragms. Only a quarter of the 

complete shape has been modeled to take advantage of symmetry conditions. Symmetrical 

boundary conditions are applied, so only symmetrical mode shapes will be produced.

Material data Elastic modulus

Poisson’s ratio

Mass density

E = 2.06´1045N/mm2

n = 0.3
r= 7.85´10-9 kg/mm

3

Section property Thickness t = 2 mm

Mass option Lumped mass

Element setting
Unique shell 

normal generation 
Off

Units : mm

R = 100

200

Y

Z
X

Rigid Diaphragm

Rigid Diaphragm

Figure 2.3.12.1
Cylindrical shell model 
with rigid diaphragms



Chapter 5. Algorithm

136 | Section 2. Eigenvalue Extraction

ANALYSIS REFERENCE

Table 2.3.12.1 Natural frequencies in Hz obtained using shell elements

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5

Figure 2.3.12.2
Vibration mode shapes

Mode Number 1 2 3 4 5

Reference 1342.5 1464.8 1725.9 1892.4 2493.1

Element 

type

Number of 

elements

TRIA-3 400 1366.0 1495.2 1745.0 1942.0 2580.8

QUAD-4 10x20 1343.5 1470.0 1728.8 1910.8 2535.3
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13) Beam with Elastic Supports

REFERENCE Timoshenko et al.
4

ELEMENTS Beam elements, mass, spring
MODEL FILENAME Eigen13.mpb

The figure below shows a beam with a lumped mass attachment. The beam is supported by 

two elastic s prings. To study the effects due to the lumped mass only, the mass of the 

beam is neglected and only its stiffness is incorporated into the analysis.

Material data Elastic modulus

Mass

Spring constant

E = 3.0 X 10
7

psi

M = 1000/386 lbm

K = 300 lbf/in

Section property Moment of inertia Ix = 1.0 in4

84 Units : in

MX

Z

36

KK

Figure 2.3.13.1
Simple beam with a 
lumped mass 
supported on two 
springs
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Table 2.3.13.1 Natural frequencies in Hz

Mode Number 1

Reference 1.875

Element type Number of elements

Beam-2 2 1.875
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1) Column Buckling

REFERENCE Gere et al
1

ELEMENTS Beam elements, shell elements, solid elements
MODEL FILENAME Buckling01.mpb

The figure below shows a column model whose buckling mode shapes depend on its 

boundary conditions.

Material data Elastic modulus E = 10000 tonf/m2

Section property
Rectangular cross-section

No shear deformations

0. 25 m x 1.0 m

Y

X

15

Units : m
Top : Roller
Bottom : Pin 

Top : Free
Bottom : Fixed

Top : Laterally guided
Bottom : Fixed

Top : Roller
Bottom : Fixed

1 tonf 1 tonf 1 tonf 1 tonf

1

0.25

2.4
Buckling Analysis 

Examples

Figure 2.4.1.1
Column model
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Table 2.4.1.1 Critical loads in tonf obtained using beam elements

Table 2.4.1.2 Critical loads in tonf obtained using shell elements

Case 1 Case 2 Case 3 Case 4

Figure 2.4.1.2
Buckling mode shapes

Case 1 2 3 4

Reference 0.5712 0.1428 2.2846 1.1684

Element type
Number of 

elements

Beam-2 15 0.5714 0.1428 2.2847 1.1685

Case 1 2 3 4

Reference 0.5712 0.1428 2.2846 1.1684

Element type
Number of 

elements

TRIA-3 30 0.5741 0.1430 2.3323 1.1812

QUAD-4 15 0.5736 0.1429 2.3245 1.1790
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Table 2.4.1.3 Critical loads in tonf obtained using solid elements

Case 1 2 3 4

Reference 0.5712 0.1428 2.2846 1.1684

Element type
Number of 

elements

HEXA-8 15 0.5747 0.1430 2.3421 1.1841
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2) Portal Frame

REFERENCE Timoshenko et al
2

ELEMENTS Beam elements
MODEL FILENAME Buckling02.mpb

The figure below shows a portal frame modeled as a two-dimensional rahmen structural 

model. There are two concentrated vertical loads applied on the structure. The critical 

buckling load will change as a function of the number of elements.

Material data Elastic modulus E = 1 x 106 psi

Section property
Area

Moment of inertia

A = 1.0 in2

Ix = 1.0 in4

Y

X

100

Units : in

100

1 lbf 1 lbf

①

②

③ ④

⑤

⑥

Figure 2.4.2.1
Portal Frame Model



Chapter 5. Algorithm

144 | Section 2. Eigenvalue Extraction

ANALYSIS REFERENCE

Table 2.4.2.1 Critical loads in tonf obtained using beam elements

Reference 737.9

Element type Number of elements

Beam-2

2 per member 739.8

4 per member 737.6

8 per member 737.5

Figure 2.4.2.2
Buckling mode shapes
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3) Clamped Square Plate

REFERENCE Chajes
3

ELEMENTS Shell elements, solid elements
MODEL FILENAME Buckling03.mpb

The figure below shows a clamped square plate subject to in-plane pressure. Using 

symmetry conditions, only a quarter of the complete shape was modeled.

Material data
Elastic modulus

Poisson’s ratio

E = 11.164 x 106 psi

n = 0.3

Section property Thickness T = 0.01 in

Y

X

1

1.0

Units : in.

P = 1.0 lbf/in. P

t = 0.01

Figure 2.4.3.1
Clamped square plate 
model
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Table 2.4.3.1 Critical loads in lbf obtained using shell elements

Reference 100.7

Element type Number of elements

TRIA-3 32 111.7

QUAD-4 16 107.3

Table 2.4.3.2 Critical loads in lbf obtained using solid elements

Reference 100.7

Element type Number of elements

HEXA-8 16 98.0

Figure 2.4.3.2
Buckling mode shapes
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4) In-Plane Buckling of Square Plate

REFERENCE Timoshenko et al
2

ELEMENTS Shell elements, solid elements
MODEL FILENAME Buckling04.mpb

The figure below shows a square plate whose out-of-plane motion is simply supported, and 

the motion of the bottom side is restrained in the in-plane y-axis direction. The centerpoint of 

the top side (point E) is subject to a concentrated load. In-plane critical buckling loads are 
computed.

Material data
Elastic modulus

Poisson’s ratio

E = 200 GPa

n = 0.3

Section property Thickness t = 0.01 mm

Y

X
Z A

B C

D

E

P = 1 kN

2

1

Units : mm

t = 0.01

Figure 2.4.4.1
Clamped square plate 
model
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Table 2.4.4.1 Critical loads in kN obtained using shell elements

Reference 330

Element type Number of elements

TRIA-3 144 342

QUAD-4 72 327

Table 2.4.4.2 Critical loads in kN obtained using solid elements

Reference 330

Element type Number of elements

HEXA-8 72 298
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5) Axially Compressed Cylinder

REFERENCE Simo et al.4

ELEMENTS Shell elements, solid elements
MODEL FILENAME Buckling05.mpb

The figure below shows an axially compressed cylinder whose lateral motion has been 

restrained. Using symmetry, half of its axial length and a quarter of the circular shape was 

modeled. 

Material data
Elastic modulus

Poisson’s ratio

E = 567 Pa

n = 0.3

Section property Thickness t = 0.247 m

P = 0.209 N/m

Clamped
R = 100 

L = 35.95

Units : m

Figure 2.4.5.1
Axially compressed 
cylinder model



Chapter 5. Algorithm

150 | Section 2. Eigenvalue Extraction

ANALYSIS REFERENCE

Table 2.4.5.1 Critical load factor obtained using shell elements

Reference 1.0833

Element type Number of elements

TRIA-3 840 1.2016*

QUAD-4 420 1.0734

* obtained from 10th buckling mode

Table 2.4.5.2 Critical load factor obtained using solid elements

Reference 1.0833

Element type Number of elements

HEXA-8 420 1.0631

Figure 2.4.5.2
Buckling mode shapes
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6) L-bracket plate

REFERENCE Simo et al.
4

and Argyris et al.
5

ELEMENTS Shell elements, solid elements
MODEL FILENAME Buckling06.mpb

The figure below shows an L-bracket plate that is subject to in-plane loading. Critical lateral 

buckling loads occur due to the in-plane moments caused by the loading.

Material data
Elastic modulus

Poisson’s ratio

E = 71.24 GPa

n = 0.3

Section property Thickness t = 0.6 mm

240

240

30

Units : mm

t = 0.6
XY

P = 1 N

Figure 2.4.6.1
L-bracket plate model

Figure 2.4.6.2
Buckling mode shapes
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Table 2.4.6.1 Critical loads in N obtained using shell elements

Reference 1.137 (Simo et al.), 1.155 (Argyris et al.)

Element type Number of elements

TRIA-3 136 1.187

QUAD-4 68 1.199

Table 2.4.6.2 Critical loads in N obtained using solid elements

Reference 1.137 (Simo et al.), 1.155 (Argyris et al.)

Element type Number of elements

HEXA-8 68 1.198

Reference
                                                                   
1    J.M. Gere and S.P. Timoshenko, “Mechanics of Materials”, 2nd Edition, Thomson 

Brooks/Cole, California, New York, 1984
2    S.P. Timoshenko and J.M. Gere, “Theory of Elastic Stability”, 2nd Edition, McGraw-

Hill, New York, 1961
3    A. Chajes, “Principles of Structural Stability Theory”, Prentice-Hall, Englewood Cliffs, 

N.J, 1974
4    J.C. Simo, D.D. Fox and M.S. Rifai, “On a Stress Resultant Geometrically Exact 

Shell Model. Part III: The Computational Aspects of the Nonlinear Theory”, 
Computer Methods in Applied Mechanics and Engineering, Vol. 79, pp.21-70, 1990

5    J.H. Argyris, H.Balmer, J.St. Doltsinis, P.C. Dunne, M. Haase, M. Kleiber, G.A. 
Malejannakis, H.P. Malejenek, M. Muller and D.W. Scharpf, “Finite Element Method 
– Ther natural approach”, Computer Methods in Applied Mechanics and 
Engineering, VOl. 17/18, pp. 1-106, 1979
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Effective Mass and Mode 

Superposition Method

When the natural frequency/period and mode shapes have been calculated, other useful numbers like 

effective mass and mass participation factor may also be computed. The modal participation factor of 

the i th mode is represented by iaG and can be determined as follows:

1
, 1, 2,3, 4,5, 6 (no summation)

(generalized mass)

T
i i

i

T

i i i

m

m

a af a

f f

G = =

=

MT

M

       (5.3.1)

a : Direction of the degree of freedom (1~3 : displacement, 4~6 : rotation)

Here, aT represents the size of the rigid body motion in each respective direction, and is set up to 

maintain the characteristics of each node. 

10 0

20 0

30 0

4

5

6

1 0 0 0

0 1 0 0

0 0 1 0
,

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ez z y y

ez z x x

ey y x x
e

e

e

e

b abd

- - ì üé ù
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ê ú ï ï
ê ú ï ï
ê ú ï ïë û î þ

(5.3.2)

Section 3

3.1
Effective Mass
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0 0 0, ,x y z signify the centers of rotation. In midas nGen the centers of rotation are based on the entire 

model’s center of mass (including the mass of restrained nodes).

Effective modal mass is also calculated in each direction, and may be calculated by using all 

participation factors as shown below:

2( )eff
i i im ma a= G (5.3.3)

The mode shape for a restrained degree of freedom is always zero. If all the effective modal masses 

are summed, then the value should be equal to the mass of the entire model excluding the mass of the 

restrained masses. Thus, even if all modes are calculated, because the masses of the restrained 

nodes are excluded, the mass participation factor should be slightly less than 100%. Consequently, 

when calculating the mass participation factor, it is typical to exclude the mass of the restrained nodes 

from the total mass.

In dynamic response analysis, midas nGen offers the ability to apply modal superposition. Modal 

superposition method solves the linear dynamic equilibrium equation (as shown below) not directly but 

through a modal equilibrium equation that has reduced the size of the problem through eigenvalue 

analysis.

   ( ) ( ) ( ) ( )t t t t+ + =Mu Cu Ku f&& &                  (5.3.4)

If displacement in space coordinates is written as ( )tu , then it may be written as a function of the 

natural mode shape Φ and strain functions ( )tξ as follows:

( ) ( ) [ ]1 2, ... Nt t f f f= =u Φξ Φ (5.3.5)

3.2
Modal Superposition 

Method
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Using the this, then the dynamic equilibrium equation (Equation 5.3.4) may be expressed in modal 

coordinates as the following:

[ ] ( ) [ ] ( ) [ ] ( ) ( )T T T Tt t t t+ + =Φ MΦ ξ Φ CΦ ξ Φ KΦ ξ Φ f&& & (5.3.6)

Typically, when applying modal superposition, higher order modes are neglected and only lower 

modes are considered in order to constitute the natural mode shape Φ . Thus, Equation 5.3.6 is 

considered an approximation of Equation 5.3.4. Thus, if not enough modes are included in the 

analysis, then the results may not demonstrate the true physical displacements in the model and 

accuracy may be greatly compromised.

The modal equilibrium equation (Equation 5.3.6) may be expressed as an independent function for 

each mode, in the case where the modal damping matrix TΦ CΦ is zero:

( ) ( ) ( )i i i i im t k t p tx x+ =&&      (5.3.7)

im : ith modal mass ip : ith mode loading

ik : ith modal stiffness ix : ith mode strain

Likewise, when using modal superposition, the number of unknown variables may be reduced to the 

number of calculated natural modes. Of course, if each mode may be isolated, then the modal 

dynamic equilibrium equation may be solved much more efficiently.

Damping
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After reducing the size of the modal equilibrium equation (Equation 5.3.6) using natural modes and 

decoupling the modes with a diagonal damping matrix ( TΦ CΦ ), then the equilibrium equation may be 

expressed in modal functions like Equation 5.3.7:

( ) ( ) ( ) ( )i i i i i i im t b t k t p tx x x+ + =&& &         (5.3.8)

ib : ith mode damping coefficient

It also may be expressed as the following:

2 1
( ) 2 ( ) ( ) ( )

ii i i i i i

i

t t t p t
m

x z wx w x+ + =&& & (5.3.9)

( )2i i i ib mz w= : Mode damping ratio

  2
i i ik mw =     : Mode frequency

midas nGen offers users the ability to set the value of damping for each mode. In this option, the 

modal damping value is added to the modal damping matrix TΦ CΦ that has been constructed from 

mass-proportional damping, stiffness-proportional damping, or other typical damping values. Therefore, 

decoupling of the modal equilibrium equation can only occur when the modal damping matrix TΦ CΦ

is a diagonal matrix. For this to occur, proportional damping coefficients and structural damping must 

be consistent and/or springs/dampers must not exist in the model. If not, the modal damping matrix will 

not be a diagonal matrix and computation can only proceed with the coupled modal equilibrium 

equations.

Enforced Motion

Enforced motion may not be applied directly to the modal equilibrium equation. Midas nGen applies 

the enforced motion through the following process.

First, the equilibrium equation (Equation 5.3.4) is separated into degrees of freedom that are subject to 

enforced motion and degrees of freedom that are not.

11 12 1 11 12 1 11 12 1 1

21 22 2 21 22 2 21 22 2 2

é ùì ü é ùì ü é ùì ü ì ü
+ + =í ý í ý í ý í ýê ú ê ú ê ú

ë ûî þ ë ûî þ ë ûî þ î þ

M M u C C u K K u f

M M u C C u K K u f

&& &

&& &
(5.3.10)
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1u : Displacement of degree of freedom not subject to enforced motion

2u : Displacement of degree of freedom subject to enforced motion

1f : Loading on degree of freedom not subject to enforced motion

2f : Loading on degree of freedom subject to enforced motion

Displacement 1u may then be separated into quasi-static displacement 
1
qsu and dynamic relative 

displacement y .

1 1

1
1 11 12 2

qs

qs -

= +

= -

u u y

u K K u
(5.3.11)

Rearranging the equation with respect to the dynamic relative displacement y :

( )1
11 11 11 1 11 11 12 12 2

-+ + = + -M y C y K y f M K K M u&& & &&                   (5.3.12)

This equation omits the damping term on the right handside. Applying modal superposition, the 

equation may be expressed as a function of the modal relative displacement x, using ( ) ( )11t t=y Φ x :

( )1
11 11 11 11 11 11 11 11 11 11 1 11 11 12 12 2

1
1 1 11 12 2 11

T T T T

qs

-

-

é ùé ù é ù é ù+ + = + -ë û ë û ë û ë û

= + = - +

Φ M Φ x Φ C Φ x Φ K Φ x Φ f M K K M u

u u y K K u Φ x

&& & &&
(5.3.13)

If 1 1K is singular due the existence of a rigid-body mode, then mass shifting may be used on the 

stiffness matrix 1 1K with mass matrix 11M to remove this singularity.

Residual Vector

Before proceeding with modal superposition, it is important to remain cautious of errors due to higher 

order modes that are not included in the natural mode shape Φ , as was previously explained. To 

reduce these errors, midas nGen uses the residual vector R , which is constructed to be orthogonal to 

the basic natural modes by using the mass matrix M and stiffness matrix K .

1( )T-= -R K I MΦΦ F (5.3.14)
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Here, F is typically the loading vector. If there are damping elements, then damping is included. 

Midas nGen follows the methods proposed by Dickens and other authors3, and finds augmented mode 

shapes orthogonal to one another based on the residual vector R . Then, these augmented mode 

shapes are added to the fundamental mode shape Φ and then modal superposition is applied.

                                                                   
3 J.M. Dickens, J.M. Nakagawa, and M.J. Wittbrodt, “A Critique of Mode Acceleration and Modal Truncation 

Augmentation Methods for Modal Response Analysis” Computers & Structures, Vol 62, No. 6, 1997, pp. 

985-998
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Dynamic Response Analysis

In midas nGen, the transient response to the linear equation of motion (such as in Equation 5.3.4) can 

be computed using direct time integration and mode superposition. Direct time integration for linear 

problems use the implicit method.

Implicit Direct Time Integration

The implicit direct time integration in midas nGen uses the a method ( H H T a- )１ proposed by 

Hilber, Hughes, and Taylor. H H T a- is a generalized Newmark method２ and has an adjustable, 

numerical damping effect. Through this, high frequency noise can be eliminated, and, like the 

Newmark method, has second order accuracy with respect to the timestep. The HHT-a method uses 

a modified dynamic equilibrium equation as shown below:

1 1 int, 1 , 1 in t, ,(1 )n n n ext n n n ex t n
H Ha a+ + + +é ù é ù+ + + - - + - =ë û ë ûMa Cv f f Cv f f 0             (5.4.1)

Here, 1n+a and 1n+v signify the acceleration and velocity at the 1n +
th timestep, respectively. 

[ 1 3, 0]Ha Î - is a coefficient that determines the numerical damping effect. Incorporating effects due 

to non-mechnical strains (e.g. thermal expansion) and internal forces due to prestressing and pore 

water pressure, the internal force in linear analysis is expressed as the following equation which 

includes the product of the stiffness matrix and degrees of freedom:

                                                                   
１ H.M Hilber, T.J.R. Hughes, and R.L. Taylor, “Improved Numerical Dissipation for Time Integration 

Algorithms in Structural Dynamics,” Earthquake Engineering and Structural Dynamics, Vol 5, No. 3, 1977, pp. 

283-292
２ .M. Newmark, “A Method of Computation for Structural Dynamics,” ASCE Journal of the Engineering 

Mechanics Division, Vol. 5, No. EM3, 1959, pp. 67-94

Section 4

4.1
Time Integration
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int, 1 1 nonmech, 1 int,0n n n+ + += - +f Ku f f (5.4.2)

If the time difference equation of the Newmark method is introduced, the relationship between velocity, 

displacement, and acceleration at time steps , 1n n+ may be expressed as shown below:

1 1

1 2 1

(1 )

1
2 (1 2 )

2

n n n n

n n n n n

t

t t

g g

b b

+ +

+ +

é ù= + D + -ë û

é ù= + D + D + -ë û

v v a a

u u v a a

                    (5.4.3)

If Equation 5.4.1 (equilibrium equation) is rearranged with Equations 5.4.2 and 5.4.3, then the 

displacement at time 1n + may be written as the unknown variable and the system of simultaneous 

equations may be written as shown below:

1
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(1 )1
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+ê ú÷

øë û
a Ku

  (5.4.4)

The righthandside efff in Equation 5.4.4 is determined by the external force and the calculated 

displacement, velocity, and acceleration at time step n . If the righthand side has been determined, 

then the system of simultaneous equations (explained in the previous paragraph) is applied to solve 

for the displacement at time 1n + ( 1n+u ). This displacement may then be substituted into the 

Newmark difference equation (Equation 5.4.3) to obtain the velocity and acceleration at time 1n + .

The transient response of the structure follows this series of steps to carry out repeated time 

integration.
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The lefthandside of Equation 5.4.4 shows an effective stiffness matrix effK . If the time step is 

uniform throughout the analysis, then the decomposed matrix is reused and only the forward backward 

substitution is repeated, allowing for an efficient analysis scheme.

H H T a- time integration has unconditional stability if (1 2 ) / 2Hg a= - and 2(1 ) / 4Hb a= - . If 

0Ha = , then the analysis becomes more specialized as the algorithm will resort to using a Newmark 

method that is based on average acceleration. Midas nGen uses  0.05Ha = - as the default value.

Damping Effects

Midas nGen allows for mass-proportional damping and stiffness-proportional damping. As mentioned 

in Section 5.3.2, there is also modal damping that is only applied in modal superposition. The damping 

effects incorporated into linear time history analysis is applied to the damping matrix C as shown 

below:

e e e e
j j j ja b= + +C M K B                                                              (5.4.5)

e
ja : jth element mass-proportional damping coefficient

e
jb : jth element stiffness-proportional damping coefficient

e
jM : jth element mass matrix

e
jK : jth element stiffness matrix

B : Damping matrix due to damper elements

Application of Mode Superposition

In order to apply time integration that uses modal superposition, the mass in the modal equilibrium 

equation (Equation 5.3.6) may be factored to take on a value of 1 and the equation may be rewritten 

as the following:

2( ) ( ) ( ) ( ) ( )

[ ] [ ]

i
iji j i i i i

T
ij ij ij

p
t C t t p t p t t t

t

C

x x w x
D

+ + = = - D +
D

= =C Φ CΦ

&& &
                                        (5.4.6)



Chapter 5. Algorithm

162 | Section 4. Dynamic Response Analysis

ANALYSIS REFERENCE

Time integration that replies on modal superposition can be divided into the following two cases 

depending on the coupling state of the modal damping matrix ijC :

① Uncoupled이 모드마 Uncoupled System

If the modal damping matrix ijC is a diagonal matrix and the system becomes decoupled, then the 

response per mode may be calculated independent of the other modes. The displacement and velocity 

at each time step may be calculated as a function of the previous time step’s displacement and 

velocity, as shown below. The mode-specific integration coefficients iaab , ibab may be calculated 

using the initial conditions (the displacement and velocity at the previous time step) and the 

particular and homogeneous solutions of Equation 5.4.6.

1

11 12 11 12

1 1
21 22 21 22

n n ni i i i
i i i

n n ni i i i
i i i

pa a b b

pa a b b

x x

x x

+

+ +

é ù é ù é ùé ù é ù
= +ê ú ê ú ê úê ú ê ú
ë û ë ûë û ë û ë û

& &
                                              (5.4.7)

② Coupled System

If the modal damping matrix cannot be decoupled, then coupled modes must be considered and unlike 

the previous system, system response may not be computed on a per-mode basis. In this case, midas 

nGen decomposes the modal damping matrix into the diagonal component and the off-diagonal 

component. The damping due to the off-diagonal component is treated as an external load.

diag off= +C C C   (5.4.8)

As such, the modal displacements are independent and the modal velocities remain coupled. Like

direct time integration, the following system of equations may be solved without continuous 

decomposition of the matrix if the time step is uniform throughout the analysis.
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1
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1 1
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& &         (5.4.9)

Initial Conditions of Modal Superposition

If initial displacement and velocity are given, then the initial displacement 0
ix and initial velocity 0

ix
& are 

defined as follows for all coordinate systems. If all modes are used then equality is satisfied; if only 

some modes are used, then the following becomes an approximate relationship.

0
0

0
0

1

1

T
i i

i

T
i i

i

m

m

x f

x f

=

=

Mu

Mv

              (5.4.10)

if : ith fundamental mode shape

0u : Initial displacement

0v : Initial velocity

Frequency response analysis measures the response of an object that vibrates at a certain period. It is 

most often used in vibration analysis of specialized equipment. In frequency response analysis, all 

loads are defined in the frequency domain and are expressed as a function of the excitation frequency. 

Thus, if the angular excitation frequency is w , then the loading for frequency response analysis may 

be expressed as a complex harmonic function as shown below:

( ) ( ) i tt e ww=f f (5.4.11)

Then the response due to that load may be expressed likewise:

( ) ( ) i tt e ww=u u                                                            (5.4.12)

4.2
Frequency 

Response Analysis
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Applying this, the equation of motion is expressed as:

( ) ( )2 iw w w wé ù- + + =ë ûM C K u f                                                   (5.4.13)

Here, loading and displacement are both expressed as complex numbers. The magnitude of a 

complex number represents the maximum value within the load or displacement’s period of motion, 

and the phase angle represents the location of that maximum value within the period of motion. The 

real component of a complex number represents the load or displacement at the start of its periodic 

motion. The imaginary component is the load or displacement at the quarter-point of the periodic 

motion and shows how the load or displacement changes as a function of the period of motion. 

Magnitude, phase angle, real component and imaginary component are defined by the following 

relationships:

2 2
r iu u u= + : Magnitude

1tan ( / )i ru uq -= : Phase Angle

cosru u q= : Real Component

siniu u q= : Imaginary Component

Direct Frequency Response Analysis

If the direct method is used in frequency response analysis, then the solution to the system of 

simultaneous equations in Equation 5.4.13 will yield the frequency response ( )wu . Without damping, 

Equation 5.4.13 becomes an imaginary system of equations, but, with damping, a system of complex 

equations must be solved. When using the direct method, an accurate result can be reached but the 

system of equations must be re-solved for all excitation frequencies. Thus, for larger problems or a 

large number of excitation frequencies, the computation becomes very inefficient.
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Response spectrum analysis measures the effects of base motion (the equal shaking of nodes that 

have been restrained with boundary conditions), particularly in the response of structures due to 

earthquake ground motions. This analysis is one of the most common analysis methods in earthquake 

engineering. This method assumes that the system response is linear and measures only the 

maximum response (spectral ordinate). Thus, for problems in which the nonlinear behavior dominates 

or the value and/or consistency of the time step is especially important, then analysis using time 

integration (Section 4.4.1, Section 7.1) is more appropriate. 

The maximum response is determined based on a combination of modes that reflects the modal 

participation factor of the modal responses that correspond to the pre-defined spectral functions. Here, 

the simultaneity of the maximum response per mode is not considered and instead the maximum 

response per mode is calculated using a combination method to arrive at the final response value. 

Thus, response spectrum analysis may be seen as an approximation of time integration. Consequently,

if the spectral function is defined based on a specific acceleration or specific earthquake ground 

motion, then response spectrum analysis can obtain the approximate maximum value of linear 

transient analysis (linaer time history analysis) due to that specified acceleration. However, it is 

more typical to use a design response spectrum (statistical spectrum based on earthquake ground 

motion records within a specific region or nation) to obtain analytical results for seismic design.

Modal Spectral Ordinate

The dynamic equilibrium equation for response spectrum analysis is the same as Equation 5.3.6, and 

the maximum response per mode may be expressed using spectral data as shown below:

[ ] ( )

( )
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max ( ) ,

max ( ) ,
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i i i D i i

i i i V i i

i i i A i i
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x x w z

x x w z
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= = G

é ù= = Gë û

é ù= = Gë û

& &

&& &&

                                                (5.4.14)

( ),D i iS w z : Displacement spectral data

( ),V i iS w z : Velocity spectral data

4.3
Response Spectrum 

Analysis
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( ),A i iS w z : Acceleration spectral data

iG : i th mode participation factor

If Equation 5.4.14 is substituted in to Equation 5.3.5, then the contribution to maximum displacement, 

velocity, and acceleration per mode may be expressed using spectral data as shown below:

( ) ( )

( ) ( )

( )

max 2

max

max

, , /

, , /

,

i i i D i i i i A i i i

i i i V i i i i A i i i

i i i A i i

u S S

v S S

a S

f w z f w z w

f w z f w z w

f w z

= G = G

= G = G

= G

(5.4.15)

A single spectral ordinate is defined as the maximum response of that mode with respect to the natural 

period, and includes effects due to modal damping. The response spectrum due to a specific 

acceleration record has a large variation in the maximum response at each frequency, and thus may 

look quite complicated when presented on a graph. In the case of a design response spectrum, it’s 

more typical to present the design criteria as a linear function in logspace, as shown in Figure 5.4.1. 

Likewise, it is normal to save spectral data in logarithmic scale.
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If the maximum quantity for the ith mode is called m ax
iR (the quantity may be displacement, stress, 

internal force, reaction force, etc), then the true maximum value of that quantity might be assumed to 

be the sum of the modal maxima, but it cannot be guaranteed that the maximum quantities per each 

mode occur at the same time step. Thus, a simple linear combination does not lead to an accurate 

maximum value.

max
max

1

N

i
i

R R
=

¹å         (5.4.16)

Thus, there needs to be a method for approximating the maximum value via modal combination. There 

are various modal combination methods that incorporate different modal characteristics like damping, 

but these methods do not yield proper approximate values for all types of models. Thus, it is necessary 

to be cognizant of the characteristics of the different modal combination methods.

① Summation of the absolute value (ABS)

max
max

1

N

i
i

R R
=

=å (5.4.17)

This method assumes that each modal response has the same phase, and that the maximum quantity 

per mode all occur simultaneously. Thus, this method yields the largest value.

② Square root of the summation of the squares (SRSS)

( )
2max

max
1

N

i
i

R R
=

= å                                                                (5.4.18)

This method provides a good approximation if the modes are sufficiently decoupled.
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③ Naval research laboratory method (NRL)

( )
2max max

max
1,

N

m i
i i m

R R R
= ¹

= + å                                                  (5.4.19)

This method has separated a single mode (m ) from the SRSS method, and this mode possesses the 

largest quantity across all modes. Similar to the SRSS method, the NRL method is appropriate if the  

modes are sufficiently decoupled.

The above methods are effective only if the modes are sufficiently decoupled. The U.S. Nuclear 

Regulatory Commission (NRC)’s regulatory guide 1.92(1976) provies other methods of approximating 

the maximum quantity even if the modes are not sufficiently decoupled.

④ Ten percent method (TENP)

1
2

max
1 1

2
N i

i i j
i j

R R R R
-

= =

æ ö
= +ç ÷

è ø
å å                                         (5.4.20)

This method includes the effect due to modes with frequencies that are within 10% of one another. 

Here, if the two modes’ , ( )i j j i< frequencies satisfy the following relationship, then it can be said 

that the modes have frequencies that are within 10% of one another.

0.1i j

i

w w

w

-
£                                                      (5.4.21)

⑤ Complete quadratic combination method (CQC)
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max
1 1

N i

i ij j
i j

R R Rr
= =

= åå                                           (5.4.22)

Here, 
ijr is the cross-correlation coefficient between modes and is defined by the following 

relationship:

3 2

2 2 2 2 2 2

8 ( )

(1 ) 4 (1 ) 4( )

i j i ij m ij

ij

ij i j ij ij i j ij

r r

r r r r

z z z z
r

z z z z

+
=

- + + + +
                              (5.4.23)

ijr : Frequency ratio ( /j iw w ), 
j iw w<

If i j= in Equation 5.4.23, then regardless of the damping ratio 1ijr = . If the damping ratio is zero, 

then 1ijr = for all modes and thus the result is the same as the SRSS method. If the damping ratio for 

the two modes are equal, then the equation may be simplified as shown below:

2 3 2

2 2 2 2

8 (1 )
( )

(1 ) 4 (1 )
ij ij

ij i j

ij ij ij

r r

r r r

z
r z z z

z

+
= = =

- + +
                                (5.4.24)

This combination method accurately considers the relationship between the modes, but the calculated 

result tends to increase proportionally to the square of the number of modes.

Sign of the Result of Modal Combination Methods

The modal combination methods yield results as an absolute value, and as such the response 

spectrum data is always positive. However, vector results such as reaction force or strain requires an 

appropriate direction (i.e. sign). Typically, the sign is defined to be the sign of the major mode. The 

major mode is selected from the modes with the highest mass participation factors and whose 

direction is most similar to the loading direction specified by the spectrum. Other ways of assigning the 
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sign is to take the sign of the mode whose value is the absolute maximum, and then, for strain energy, 

to assign the sign of the mode at which the sum of the element strain energies is the largest.

Modification of Spectrum Data 

As shown in Equation 5.4.14, spectrum data is a function of the natural frequency and modal damping. 

However, the user does not know the frequency before running the analysis, so the spectrum data 

takes a tabular format with consistent spacing. Thus, an interpolation method is used to read the 

spectrum data corresponding to a modle’s natural frequency or period. It is most common to use linear 

interpolation on a logarithmic scale as this most accurately captures the relationship of spectral 

response and frequency. For spectrum data recorded for various damping values, the same 

interpolation scheme is used for the structure’s modal damping ratio.

However, if the spectrum data is created for a single damping ratio, then interpolation is not possible. 

Thus, there needs to be a modification method for spectra with a single damping ratio. The Japanese 

Highway Bridge Specifications (2002) provides a correction factor for damping ratios (as shown below):

( )
1.5

0.5
40 1

DC z
z

= +
+

                                           (5.4.25)

Damping ratio, z
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Figure 5.4.2 Correction factor 

for the damping ratio
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When the damping ratio is 0.05, then 1DC = (point A ). Thus, Equation 5.4.25 is a correction factor for 

when the damping ratio is 0.05. Equation 5.4.26 shows how the correction factor may be applied 

for spectra whose damping ratio is not 0.05.

( )
( )

max maxD i
i i

D spectrum

C
R R

C

z

z
=                                               (5.4.26)

Selection of Excitation Direction

The excitation direction of an earthquake is not pre-determined, so in seismic design it is typical to 

design for a combination of excitations in two orthogonal directions. However, even for an earthquake 

of the same magnitude, the damage to the structure may vary depending on the direction. Midas nGen

offers the capability to find the direction in which the most amount of structural damage can be 

expected. This is given in the global coordinate system and in the x-y plane. Using the z-axis of the 

GCS as the center and within 0 to 180 degrees, the direction in which the sum of the reactions per 

mode is maximized or in which the total strain energy is maximized is selected to be the excitation 

direction or angle.

Figure 5.4.3 Sample graph 

showing structural response 

as a function of excitation 

direction



Chapter 5. Algorithm

172 | Section 4. Dynamic Response Analysis

ANALYSIS REFERENCE

1) Simply Supported Deep Beam

REFERENCE NAFEMS
1

ELEMENTS Beam elements, solid elements
MODEL FILENAME LinearDynamic01.mpb

The figure below shows a simply supported deep beam subject to a distributed load. Time-
variant forcing functions are exerted on the structure. The following results show 

displacement and stress at point A.

0 30 60 90 120 150 180 

Excitation Angle

Reaction Sum.

Total Strain Energy

4.4
Linear Dynamic 

Analysis Examples

Figure 4.4.1.1
Simply supported deep 
beam model
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Material data Elastic modulus 

Poisson's ratio

Mass density

Mass proportional damping

Stiffness proportional damping

Modal damping

E = 200 GPa
n= 0.3
r= 8000 kg/m3

a = 5.36 sec-1

b= 7.46´10-5sec

x = 0.02

Section property Squre cross-section 2 m x 2 m

Forcing functions (1) Harmonic

(2) Periodic

(3) Transient

0 sinF F tw= (where 2w fp= )
( )0 sin sin3F F t tw w= -

(where 2 , 20w f f Hzp= = )

0F F= , 0t >
* Rayleigh damping coefficients, α and β are chosen to give 0.02 damping in the 

dominant first mode.
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Table 4.4.1.1 Peak responses and frequency of beam subjected to harmonic load

Table 4.4.1.2 Peak responses of beam subjected to periodic forcing function

Peak A
Zu [mm] Peak As [MPa] Peak Frequency [Hz]

Reference 13.45 241.9 42.65

Element 

type

Number of 

elements
Direct Modal Direct Modal Direct Modal

BEAM-2 10 13.51 13.51 244.4 244.3 42.60 42.60

HEXA-8 10 13.09 13.09 236.5 236.5 43.40 43.40

PENTA-

6
10´4 12.22 12.23 235.2 235.5 44.75 44.75

Peak A
Zu [mm] Peak As [MPa]

Reference 0.951 17.1

Element 

type

Number of 

elements
Direct Modal Direct Modal

BEAM-2 10 0.955 0.955 17.5 17.4

HEXA-8 10 0.962 0.962 17.5 17.3

PENTA-

6
10x4 0.964 0.965 17.3 18.1
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Table 4.4.1.3 Peak responses of beam subjected to transient step load

Peak A
Zu [mm] Peak time [sec] Peak As [MPa] Static A

Zu [mm]

Reference 1.043 0.0117 18.76 0.538

Element 

type

Number of 

elements
Direct Modal Direct Modal Direct Modal Direct Modal

BEAM-2 10 1.044 1.043
0.011

7
0.011

6
18.51 18.51 0.537 0.537

HEXA-8 10 1.012
1.101

2
0.011

6
0.011

6
18.03 18.03 0.521 0.521

PENTA-

6
10x4 0.946 0.945

0.011
2

0.011
2

17.40 17.31 0.487 0.487
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2) Simply Supported Thin Plate

REFERENCE NAFEMS
1

ELEMENTS Shell elements
MODEL FILENAME LinearDynamic02.mpb

The figure below shows a simply supported thin square plate model that is subject to a 

vertical distributed pressure load. Time-variant forcing functions are applied to the structure. 

The following results show the displacement and stress at point A.

Figure 4.4.2.1
Simply supported thin 
plate model
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Material 

data

Elastic modulus 

Poisson's ratio

Mass density

Mass proportional damping

Stiffness proportional damping

Modal damping

E  = 200 GPa

n = 0.3
r = 8000 kg/m3

a = 0.229 sec
-1

b= 1.339x10
-3

sec

x = 0.02

Section 

property
Thickness t = 0.05 m

Forcing 

functions

(1) Harmonic

(2) Periodic

(3) Transient

0 sinF F tw= (where 2w fp= )
( )0 sin sin3F F t tw w= -

(where 2 , 1.2w f f Hzp= = )

0F F= , 0t >

* Rayleigh damping coefficients, α and β are chosen to give 0.02 damping in the dominant first mode.

Table 4.4.2.1 Peak responses and frequency of thin plate subjected to harmonic load

Peak A
Zu [mm] Peak As [MPa] Peak Frequency [Hz]

Reference 45.42 30.03 2.377

Element 

type

Number of 

elements
Direct Modal Direct Modal Direct Modal

QUAD-4 8´8 45.12 45.15 31.68 31.70 2.415 2.415

TRIA-3 128 43.59 43.63 30.38 30.41 2.455 2.455
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Table 4.4.2.2 Peak responses of thin plate subjected to periodic forcing function

Table 4.4.2.3 Peak responses of thin plate subjected to transient step load

Peak A
Zu [mm] Peak As [MPa]

Reference 2.863 2.018

Element 

type

Number of 

elements
Direct Modal Direct Modal

QUAD-4 8´8 2.913 2.914 2.073 2.075

TRIA-3 128 2.883 2.884 2.037 2.039

Peak A
Zu [mm] Peak time [sec] Peak As [MPa] Static A

Zu [mm]

Reference 3.523 0.210 2.484 1.817

Element 

type

Number of 

elements
Direct Modal Direct Modal Direct Modal Direct Modal

QUAD-4 8´8 3.474 3.487 0.210 0.212 2.382 2.435 1.770 1.770

TRIA-3 128 3.355 3.368 0.206 0.206 2.282 2.325 1.709 1.709



ANALYSIS REFERENCE Chapter 5. Algorithm

Section 4. Dynamic Response Analysis | 179

3) Simply Supported Thick Square Plate

REFERENCE NAFEMS
1

ELEMENTS Shell elements, solid elements
MODEL FILENAME LinearDynamic03.mpb

The figure below shows a simply supported thick square plate model that is subject to a 

vertical distributed pressure load. Time-variant forcing functions are applied to the structure. 

The following results show the displacement and stress at point A.

z

Y

X

10.0

1
0
.0

x = y = Rz = 0 at all nodes

Rx = Ry = 0 along 4 
edges

Units: m

F0=106 N/m2

A

Figure 4.4.3.1
Simply supported thick 
plate model
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Material 

data

Elastic modulus 

Poisson's ratio

Mass density

Mass proportional damping

Stiffness proportional damping

Modal damping

E  = 200 GPa

n = 0.3
r = 8000 kg/m3

a = 5.772 sec
-1

b= 6.929x10
-5

sec

x = 0.02

Section 

property
Thickness t = 1 m

Forcing 

functions

(1) Harmonic

(2) Periodic

(3) Transient

0 sinF F tw= ( where 2w fp= )
( )0 sin sin3F F t tw w= -

( where 2 , 1.2w f f Hzp= = )

0F F= , 0t >

* Rayleigh damping coefficients, α and β are chosen to give 0.02 damping in the dominant first mode.

Table 4.4.3.1 Peak responses and frequency of thick plate subjected to harmonic loads

Peak A
Zu [mm] Peak As [MPa] Peak Frequency [Hz]

Reference 58.33 800.8 45.90

Element 

type

Number of 

elements
Direct Modal Direct Modal Direct Modal

QUAD-4 8´8 60.00 60.00 809.7 809.7 46.50 46.50

TRIA-3 128 57.77 57.80 773.7 774.1 47.35 47.35

HEXA-8 96 59.15 59.16 777.2 777.3 46.80 46.80
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Table 4.4.3.2 Peak responses of thick plate subjected to periodic forcing function

Peak A
Zu [mm] Peak As [MPa]

Reference 4.929 67.67

Element 

type

Number of 

elements
Direct Modal Direct Modal

QUAD-4 8´8 5.300 5.303 72.53 72.59

TRIA-3 128 5.428 5.431 73.54 73.60

HEXA-8 96 5.341 5.344 70.96 71.01

Table 4.4.3.3 Peak responses of thick plate subjected to transient step load

Peak A
Zu [mm] Peak time [sec] Peak As [MPa] Static A

Zu [mm]

Reference 4.524 0.0108 62.11 2.333

Element 

type

Number of 

elements
Direct Modal Direct Modal Direct Modal Direct Modal

QUAD-4 8´8 4.565 4.545
0.010

7

0.010

5
59.03 59.58 2.339 2.339

TRIA-3 128 4.398 4.380
0.010

6

0.010

5
56.11 56.07 2.253 2.253

HEXA-8 96 4.505 4.489
0.010

8

0.010

9
56.66 57.05 2.310 2.310
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4) Response Spectrum Analysis of a Simply 

Supported Beam

REFERENCE Biggs, J.M.2

ELEMENTS Beam elements, shell elements, solid elements
MODEL FILENAME LinearDynamic04.mpb

The figure below shows a simply supported beam with a rectangular cross section. 

Response spectrum analysis yield displacement, moment, and stress results as shown 

below.

Material data
Elasitic modulus 

Mass density

E = 206.8 GPa
r = 1.0473´105 kg/m3

Section 

property
Rectangular cross-section 37.0 mm ´ 37.0 mm

Mass option Lumped mass

Figure 4.4.4.1
Simply supported beam
model
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Table 4.4.4.1 Response spectra definition (unit: m)

Table 4.4.4.2 Response spectrum analysis results obtained using beam elements

Frequency [Hz] 5.000 6.000 6.098 7.000 8.000

Period [sec] 0.2000 0.1667 0.1640 0.1429 0.1250

Type

(scale factor)

Displacement(1.0) 0.0199 0.0115 0.0110 0.0072 0.0056

Velocity(1.0) 0.6248 0.4339 0.4201 0.3188 0.2837

Acceleration(0.5) 39.258 32.716 32.190 28.042 28.521

Result at mid-span
Displacement

[mm]
Stress
[MPa]

Moment
x105 [Nm]

Reference 14.2 140.4 1.095

Element type Spectra type

BEAM-2

Displacement 14.2 138.4 1.079

Velocity 14.1 138.1 1.077

Acceleration 14.1 138.1 1.077
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Table 4.4.4.3 Response spectrum analysis results obtained using shell elements

Table 4.4.4.4 Response spectrum analysis results obtained using solid elements

Result at mid-span
Displacement

[mm]
Stress
[MPa]

Reference 14.2 140.4

Element type Spectra type

QUAD-4

Displacement 13.8 132.4

Velocity 13.7 132.0

Acceleration 13.7 132.0

TRIA-3

Displacement 13.9 134.6

Velocity 13.9 134.2

Acceleration 13.9 134.2

Result at mid-span
Displacement

[mm]
Stress
[MPa]

Reference 14.2 140.4

Element type Spectra type

HEXA-8

Displacement 13.7 132.3

Velocity 13.7 131.9

Acceleration 13.7 131.9
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5) Comparison of Linear Dynamic Analysis of a Truss 

Structure

REFERENCE Chopra, A.K.3

ELEMENTS Truss elements, shell elements, solid elements
MODEL FILENAME LinearDynamic05.mpb

The figure below shows a truss structure that is only subject to axial forces. There is either 

acceleration applied at point A or force applied at point D. The results below illustrate 

differences between the various linear dynamic analyses.

Material 

data

Elastic modulus

Mass density

E = 5 Pa
r= 1/90 kg/m3

Section 

property
Cross-section Area A = 2.0 m2

Analysis 

condition

Modal transient with tip load

Modal transient with base 

acceleration

Modal frequency with tip load

Response spectrum

F  = 10 N, 10% damping

xR =1.0m/sec2,10% damping

F  = 10 N, 10% damping

displacement spectra, 2% 

damping

gx&& F

Figure 4.4.5.1
Simply supported beam
model

Figure 4.4.5.2
Displacement response 
spectra
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Table 4.4.5.1 Displacement and acceleration at point D using modal transient analysis 
with tip load

Table 4.4.5.2 Total displacement at point D using modal transient analysis with base 
acceleration

2.0

1.0

0.0z =

0.1z =

0.01

Result type Displacement [m] Acceleration  [m/sec2]

Time step [sec] 0.1 0.2 0.3 0.1 0.2 0.3

Reference 0.4387 1.686 3.598 81.42 66.71 48.06

Element type

TRUSS-2 0.4387 1.686 3.598 81.42 66.71 48.06

QUAD-4 0.4387 1.686 3.598 81.42 66.71 48.06

HEXA-8 0.4387 1.686 3.598 81.42 66.71 48.06

Result type Displacement [m]

Time step [sec] 0.1 0.2 0.3

Reference 0.244x10-4 1.965x10-4 6.692x10-4

Element type
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TRUSS-2 0.244x10-4 1.965x10-4 6.692x10-4

QUAD-4 0.244x10-4 1.965x10-4 6.692x10-4

HEXA-8 0.244x10-4 1.965x10-4 6.692x10-4
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Table 4.4.5.3 Stress of element 1 and reaction force at point A using modal frequency 
analysis with tip load

Table4.4.5.4 Peak displacement at point D using response spectrum analysis with 2% 
modal damping ratio

Result type Displacement [m] Acceleration  [m/sec2]

Time step [sec] 0.01 0.175 0.477 0.01 0.175 0.477

Reference 2.51 15.50 3.988 5.019 31.00 7.977

Element type

TRUSS-2 2.51 15.49 3.993 5.019 30.97 7.987

QUAD-4 2.51 15.49 3.993 5.019 30.97 7.987

HEXA-8 2.51 15.49 3.993 5.019 30.97 7.987

Result type Displacement [m]

Combination method ABS SRSS TENP NRL CQC

Reference 2.902 2.248 2.248 2.767 2.246

Element type 2.902 2.248 2.248 2.767 2.246

TRUSS-2 2.902 2.248 2.248 2.767 2.246

QUAD-4 2.902 2.248 2.248 2.767 2.246

HEXA-8 2.902 2.248 2.248 2.767 2.246
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6) Column Subject to Earthquake Loads

REFERENCE Hilber, H.M. et al
4
, Hurty, W.C. et al

5

ELEMENTS Truss elements, shell elements, solid elements
MODEL FILENAME LinearDynamic06.mpb

To simulate earthquake loading, an acceleration time history is exerted to the fixed end of 

the column shown below. The reference value is the maximum value in the time history 

analysis. The results below compare the different combination methods for response 
spectrum analysis. The results also illustrate the effect of baseline correction on the 

acceleration time history.

Material data
Elastic modulus

Mass density

E = 206.8 GPa
r= 7780 kg/m3

Section property Rectangular cross-section 50.8 mm x 25.4 mm

gx&&

Figure 4.4.6.1
Column model
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Figure 4.4.6.2
El Centro N-S 
acceleration history

Figure 4.4.6.3
Displacement spectra 
for the period range 
0.03~10 sec
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Figure 4.4.6.5
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Table 4.4.6.1  Maximum displacement and velocity at the top of the column provided 
by transient analysis (relative to base)
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0 1 2 3 4 5 6 7 8 9 10

D
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p
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t [

m
m

]

Time [sec]

corrected

original

Figure 4.4.6.6
Base displacement with 
and without baseline 
correction

Result type Displacement [mm] Velocity [m/sec]

Reference 59.2 0.508

Analysis type
Number of 

elements

Direct transient

10 58.9 0.439

20 58.9 0.438

50 58.9 0.438

Modal 

transient

10 59.2 0.512

20 59.1 0.515
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Table 4.4.6.2  Maximum displacement and velocity at the top of the column provided 
by response spectrum analysis (relative to base)

50 59.1 0.516

Result type
Displacement 

[mm]
Velocity [m/sec]

Reference 59.2 0.508

Number of 

elements

Spectrum 

type

Combination 

method

10

Displacement
ABS 67.2 0.639

SRSS 57.0 0.392

Velocity
ABS 70.8 0.640

SRSS 61.0 0.395

20

Displacement
ABS 67.2 0.638

SRSS 57.0 0.392

Velocity
ABS 70.8 0.639

SRSS 61.0 0.395

50

Displacement
ABS 67.2 0.638

SRSS 57.0 0.392

Velocity
ABS 70.8 0.639

SRSS 61.0 0.395
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7) Frequency Response Analysis using Residual 

Modes

REFERENCE Dickens et al6

ELEMENTS Elastic link elements, mass elements
MODEL FILENAME LinearDynamic07.mpb

The figure below shows a mass-spring system whose frequency response analysis will 

illustrate the effects of using residual modes on result accuracy. There are four degrees of 

freedom, and the reference value is the result produced with all four modes. This reference 

is used to judge the improvement of accuracy when considering residual modes.

Material 

data

Lumped mass

Link stiffness

Modal damping

m = 1.0 kg

k = 10000 N/m

x = 0.02

1 2 3 4

k k k

m m m 0.5m

F

k k

u3 u4u1 u2

Figure 4.4.7.1
Spring-mass system
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Figure 4.4.7.2
Displacement 
amplitude response for 
DOF 3

Figure 4.4.7.3
Acceleration amplitude 
response for DOF 1
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Table 4.4.7.1 Displacement and percentage error at 3 Hz

Table 4.4.7.2 Acceleration and percentage error at 3 Hz

DOF 1 DOF 2 DOF 3 DOF 4

Reference 4.52E-05 8.89E-05 1.29E-04 6.53E-05

All Modes

% error

4.52E-05

0.0%

8.89E-05

0.0%

1.29E-04

0.0%

6.53E-05

0.0%

with residual modes

% error

4.54E-05

0.3%

8.89E-05

0.0%

1.29E-04

0.0%

6.51E-05

-0.3%

without residual modes

% error

6.60E-05

31.5%

1.05E-04

15.5%

1.01E-04

-27.5%

5.65E-05

-15.5%

DOF 1 DOF 2 DOF 3 DOF 4

Reference 1.61E-02 3.16E-02 4.60E-02 2.32E-02

All Modes

% error

1.61E-02

0.0%

3.16E-02

0.0%

4.60E-02

0.0%

2.32E-02

0.0%

with residual modes

% error

1.61E-02

0.3%

3.16E-02

0.0%

4.60E-02

0.0%

2.31E-02

-0.3%

without residual modes

% error

2.35E-02

31.5%

3.74E-02

15.5%

3.61E-02

-27.5%

2.01E-02

-15.5%
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8) Steady State Response of a Plate

REFERENCE Thomson
7

ELEMENTS Shell elements
MODEL FILENAME LinearDynamic08.mpb

The figure below shows a 2-dimensional plate model whose left end is restrained and the 

right end is subject to an in-plane pressure. Two techniques for frequency response 

analysis—direct method and modal method—are used and both results are shown below to 
confirm consistency.

Material 

data

Elastic modulus

Poisson’s ratio

Mass Density

Mass proportional damping

Stiffness proportional damping

E = 2.0´107 Pa

v = 0.0
r = 8000 kg/m3

a = 5.36 sec-1

b = 7.46´10-5 sec

Section 

property
Thickness t = 1m

L = 1.0 m

A B

CD

L = 1.0 m

A B

D C

F = 30000 N/m

Figure 4.4.8.1
2D steady state 
dynamics model
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Table 4.4.8.1 Preak displacement and stress at resonant frequency

Peak u [mm] Peak s [MPa] Frequency [Hz]

Reference 16.94 0.478 12.16

Element type
Number of 

elements
Direct Modal Direct Modal Direct Modal

QUAD-4 2´2 16.94 16.94 0.478 0.478 12.16 12.16

TRIA-3 2´(2´2) 17.56 17.56 0.476 0.467 12.07 12.07



ANALYSIS REFERENCE Chapter 5. Algorithm

Section 4. Dynamic Response Analysis | 199

9) Tower with a Lumped Mass

REFERENCE Paz
8

ELEMENTS Bar elements
MODEL FILENAME LinearDynamic09.mpb

The figure below shows a tower model with a lumped mass at the top. The tower element is 

modeled with a simplified beam with an effective stiffness, and the top weight was modeled 

with a lumped mass. The tower’s time-variant lateral displacement results are shown below.

Model data
Spring constant

Mass

K = 2.0´107 Pa

m = 100 lbm

Equivalent 

material data

Elastic modulus

Poisson’s ratio

E = 2.0´106 psi

v = 0.3

Section 

property
Square cross-section A = 1.0 In2

Mass option Coupled mass

m

K

5

( ) sin

10

o

o

F t F t

F lbf

w=

=

Units: in

L =100 in

1

1
E

m

Figure 4.4.9.1
A tower model 
subjected to sinusoidal 
force
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Table 4.4.9.1 Horizontal displacement at t=0.1, 0.2 and 0.3 seconds

Table 4.4.9.2 Horizontal velocity at t=0.1, 0.2 and 0.3 seconds

Table 4.4.9.3 Horizontal acceleration at t=0.1, 0.2 and 0.3 seconds

Time 0.1 0.2 0.3

Reference 1.6076 -3.1865 4.7420

Method
Direct 1.6079 -3.1843 4.6982

Modal 1.6082 -3.1848 4.6992

Time 0.1 0.2 0.3

Reference 2.9379 -11.6917 26.0822

Method
Direct 3.3498 -13.3339 29.7521

Modal 3.3439 -13.3084 29.6941

Time 0.1 0.2 0.3

Reference -1466.51 2907.53 -4298.04

Method
Direct -1447.58 2867.97 -4231.91

Modal -1449.45 2870.58 -4235.68
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Nonlinear Finite Element Method

Nonlinear finite element method incorporates geometric nonlinearities of an element or material. In 

midas nGen, the nonlinear method is used to consider nonlinear elastic properties or P-Delta effects. 

Figure 5.5.1 shows how the incremental solution of the linear iterative calculations approach the 

correct solution with nonlinear FEM.

Here, t
extf and t t

ext
+D f refer to the external force at time t and t t+ D , respectively. The incremental 

solution between time t and time t t+ D may be expressed by the following relationship:

t t t+D = + Du u u             (5.5.1)

D u : Incremental solution that occurs within time increment

u

f

1i+Du

iDu 1id +u

tu t t+D u

ig

t
extf

t t
ext

+D f

int,if

1i+K

Section 5

5.1
Nonlinear Method

Figure 5.5.1 Convergence of 

the incremental solution and 

finite element method
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If iterative calculations are conducted within the time increment tD to exhibit nonlinear behavior, then 

the accumulation of the incremental solutions are shown below:

1 1
1

or
n

i i i i
i

d d+ +
=

D = D = D +åu u u u u                         (5.5.2)

iDu : accumulated incremental solutions that have occurred up to the i th iterative calculation

1id +u : incremental solution that occurs at the 1i +
th iterative calculation

1id +u is calculated using the tangential stiffness matrix 1i +K and linear finite element methods, as 

shown below:

1
1 1i i id -

+ +=u K g (5.5.3)

ig : Residual/unbalanced force

Residual/unbalanced force ig is the difference between external force t t
ext

+D f and internal force ,int if , as 

shown below:

,
t t

i ext int i
+D= -g f f                                                                (5.5.4)

Equations 5.5.2 through 5.5.4 are repeated until the user-specified convergence criteria have been 

satisfied. Convergence criteria may be based on axial force, displacement, energy, or other variable 

property.

Line Search

To improve the effcency of the basic iterative method explained above, midas nGen offers line search 

capabilities. The fundamental principle of line search inserts a scalar h in Equation 5.5.3 (where the 

incremental solution 1id +u is added to the accumulated solution) to improve accuracy. In such a case, 

the accumulated incremental solution is then calculated as follows:
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1 1i i ihd+ +D = D +u u u                                                               (5.5.5)

If the 1i+Du calculated from the above equation is assumed to satisfy equilibrium conditions, then the 

principle of stationary total potential energy may be used. Consequently, the line search problem boils 

down to finding the value of h at which the differential value of potential energy becomes zero.

1( ) ( ) 0T
is h d h+= =u g                                                              (5.5.6)

If the differential value of energy ( )s h is assumed to be a linear function of h , the value ofh that 

satisfies Equation 5.5.6 is as shown below:

( 0)

( 1) ( 0)

s

s s

h
h

h h

- =
=

= - =
                                                            (5.5.7)

h

P
o

te
n

ti
a

l e
n

e
rg

y

Exact solution

1 ( ) 0T
id h+ =u g

1tan ( ( ))s h- -

Acceptable range

Figure 5.5.2 Conceptual 

diagram of the line search 

algorithm
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Here, the gradient at which h is zero or one may be expressed as shown below:

1

1 1

( 0)

( 1)

T
i i

T
i i

s

s

h d

h d

+

+ +

= =

= =

u g

u g
                                                          (5.5.8)

In actuality, the assumptions required for the line search algorithm are not completely satisfied. Thus, 

the ( )s h calculated using Equation 5.5.7 is typically not equal to zero. Midas nGen allows the user to 

set a value on the ratio ( ) / ( 0)js sh h = , and when the calculated value falls below the user-specified 

value, then the iterations will stop.

Initial Stiffness Method, Newton Raphson Method, Modified Newton Raphson Method

In nonlinear analysis, iterative methods can be categorized depending on the calculation point of the 

tangential stiffness. The methods are initial stiffness method, Newton Raphson Method, and Modified 

Newton Raphson Method. In the initial stiffness method, the tangential stiffness calculated at the 

beginning of the analysis is maintained throughout. In the Newton Raphson Method, the tangential 

stiffness is re-calculated at every iteration. In the Modified Newton Raphson Method, the tangential 

stiffness is calculated at the time of external force application or when a change occurs in the model. 

The calculation of the tangential stiffness matrix and matrix decomposition requires a lot of 

computational time, so using the Modified Newton Raphson method can lead to a much faster 

processing speed compared to the Newton Raphson method (if there are no problems in reaching 

convergence). Midas nGen does not explicitly differentiate the initial stiffness method from the Newotn 

Raphson method. Simply setting the procotol for stiffness recalculation can help utilize effects of all 

iterative methods.

Automatic Stiffness Update

The degree of nonlinearity, the smoothness of the convergent solution, and other factors of the 

model/problem will decide how to best define the point of tangential stiffness update. For nonlinear 

problems that will use the nonlinear finite element method, midas nGen provides an automated 
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tangential stiffness update that comprehensively judges the problem’s characteristics—for example, 

convergence characteristics and divergence possibilities for an iterative solution—and arrives at a 

decision for setting the calculation point/time for a stiffness update. Generally, if the problem satisfies 

the following conditions, then the tangential stiffness is updated automatically.

► If the expected number of iterations for a convergent solution exceeds the user-specified maximum 

number of iterations

► If the solution is expected to diverge

Convergence Criteria

In iterative methods, the convergence or divergence of a solution is determined based on the force 

norm, displacement norm, and energy norm. 

int, int,

Force norm ratio 
T
i i

T

i i

=
D D

g g

f f
                                                (5.5.9)

Displacement norm ratio 
T
i i

T
i i

d d
=

D D

u u

u u
                                         (5.5.10)

int,

Energy magnitude ratio 
T
i i
T

i i

d
=
D D

u g

u f
                                          (5.5.11)

For a typical nonlinear system, all convergence norms decrease simultaneously and reach 

convergence. In particular, the force norm is a measure of unbalanced equilibrium and is an excellent 

indicator of whether or not the nonlinear equation is satisfied. In contrast, the displacement norm 

represents the size of the incremental solution. When using penalty methods or solving problems in 

which the local stiffness is very large, it is not appropriate to use the displacement norm as the sole 

convergence criteria.

Midas nGen uses one or multiple of these criteria to compare to the user-specified allowable values 

and determine whether the solution will reach convergence.

Determining Divergence or Load Bisection
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The divergence of a solution is an important criterion in the automated stiffness matrix update method, 

and is based on the divergence rate iE .

1

T
i i

i T
i i

E
d

d -

=
u g

u g
                                                                     (5.5.12)

If the absolute value of the divergence rate is greater than 1 ( 1iE ³ ), then the solution to the nonlinear 

analysis has a risk of divergence. When this occurs, there are additional steps taken in the stiffness 

matrix update, such as the load bisection method.

The load bisection method is applied when the solution diverges, or if the number of iterations exceeds 

the user-specified maximum number of iterations. It may also be applied if the increment required for

the current load step is too large. The method divides the basic load step into two and restarts the 

iterative process. Thus, it is a flexible way to tackle inappropriately-sized load increments. In midas 

nGen, if a problem requires load bisection, the load bisection method is applied automatically and 

repeatedly until the maximum bisection level has been reached.

Automated Time Increment Control

To improve the efficiency of nonlinear analysis methods, midas nGen offers the capability to 

automatically update the time increment size based on the convergence of the nonlinear analysis 

solution. The default time step and maximum time step is specified by the user. If the automated 

control capability is applied, the time step size is reduced based on the number of iterations required 

for convergence after the previous iteration.

1
,max(1 )i i

s s st n t n n+D = D £ £                                         (5.5.13)

Here, the increment control coefficient sn is limited to the domain of natural numbers. This way, the 

nonlinear analysis solution should still be found close to the user’s intended time step or load step size, 
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if possible. The increment control coefficient represents the initial increment size. Its minimum value is 

1, and the user may specify the maximum value ,m axsn .

Quasi-Newton Method

Quasi-Newton method is a generalized secant method and is a type of nonlinear analysis method. It 

recalculates the stiffness matrix only when there is a loading increment in the nonlinear finite element 

method, which is a distinct advantage of the Newton method, and paves the way towards convergence 

with the least number of errors. Thus, there is no unnecessary computational time spent on 

recalculating the stiffness matrix during the iterations. The quasi-Newton method allows for efficient 

computation using decomposed stiffness matrices, and improves upon convergence and overall 

performance.

Midas nGen specifically uses the Broyden-Fletcher-Goldfarb-Shanno method6. The BFGS update 

procedure for the stiffness matrix in the context of nonlinear finite element analysis is shown below:

1 1
1

T T
j j j j j j jz- -

-= +K Γ K Γ δ δ    (5.5.14)

Here, j is the BFGS update index, and matrix
jΓ and scalar

jz are calculated as follows:

1

T
j j j j

j T
j j

z

z

= -

=

Γ I γ δ

δ γ

(5.5.15)

Then, the quasi-Newton vectors 
jδ and 

jγ are the difference between the incremental solution idu

after incorporating the line search coefficient h and the unbalanced equilibrium in the iterations, as 

shown below:

                                                                   
6 Matthies, H. and Strang, G., “The solution of nonlinear finite element equations,” International Journal for 

Numerical Methods in Engineering, Vol. 14, Issue 11, pp. 1613-1626, 1979
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1

1

j i i i

j i i

hd-

-

= D - D =

= -

δ u u u

γ g g
  (5.5.16)

In the iterative calculations, the i th incremental solution is calculated using the unbalanced 

equilibrium and the j
th BFGS-updated stiffness matrix and unbalanced equilibrium:

1 1 1 1 1
1

i i T i T i
j j j j j j jzd - - - - -

-= = -u K g Γ K Γ g δ δ g   (5.5.17)

The inverse stiffness matrix is not actually modified through the BFGS update procedure, and the 

incremental solution is determined through the recursive method. Thus, the initial stiffness matrix 

(before the BFGS update has been applied) is maintained in its decomposed form. The incremental 

solution can instead be calculated through simple vector arithmetic and recursive iterations. For such 

calculations, the quasi-Newton vector is saved, and this vector is deleted when the incremental 

solution has converged and the stiffness matrix has been reconstructed.

Arc-Length Method

Figure 5.5.3 shows various load-displacement paths with unstable equilibrium. When conducting static 

nonlinear analyses in these cases, it is impossible to progress the analysis of the unstable static 

equilibrium beyond the limit point (when using the typical load-controlled nonlinear method). Thus, the 

typical nonlinear method cannot converge to a solution once it passes the limit point. If the 

displacement controlled method is used instead, the domain of solvable problems becomes larger. 

However, the displacement controlled method is atypical and it is impossible to predict phenomena 

like snap-back behavior. In such cases, the arc-length method may be used. Even in the case of 

unstable equilibrium, the arc-length method can successfully predict the equilibrium load path.

Figure 5.5.3 Various unstable 

equilibrium paths
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The arc-length method assumes that the external force is proportional to the independent scalar 

loading parameter l . Consequently, the arc-length method intrinsically increases the number of 

degrees of freedom by one in a finite element problem. However, the algorithm ensures that the 

parameter l , along with the accumulated incremental solution, satisfies the arc-length constraint. 

Thus, the final number of degrees of freedom is maintained. The unbalanced equilibrium equation with 

the loading parameter may be expressed as follows:

,( , )i i i i ext int il l= -g u f f                                                         (5.5.18)

Here, if the condition that unbalanced equilibrium that occurs at the 1i +
th iteration becomes zero with 

the incremental solution 1id +u and the incremental load parameter 1id l + becomes linearized, then the 

relationship between the incremental solution and incremental loading parameter can be expressed as 

shown below:

1
1 1 1( )i i i i extd dl-
+ + += +u K g f                                                    (5.5.19)

Using this, then the 1i +
th iterative calculation yields the incremental solution as shown below:

Displacement Displacement

Displacement Displacement

L
o

a
d

L
o

a
d

L
o

a
d

L
o

a
d

Snap-through
Snap-back

Brittle failure
Ductile failure
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1 1i i i Td dl+ +D = D + +u u u u                                                     (5.5.20)

1
1i id -

+=u K g : Incremental solution due to unbalanced equilibrium

1
1T i ext
-

+=u K f : Displacement due to the total load

Midas nGen uses the Cirsfield, Riks, or Modified Riks arc-length method, and the Crisfield method7

uses the following basic restraint condition:

2
1 1
T

i i l+ +D D = Du u                                                          (5.5.21)

lD : Arc-length

Using the above equation, the incremental loading parameter 1id l + can be calculated. Substituting 

this, the 1i +
th iterative solution can be calculated. Like typical nonlinear solution methods, this 

procedure is repeated until the user-specified convergence criteria has been satisfied, and the 

converge criteria is the same as that of the typical nonlinear method. Thus, internal force, 

displacement, or change in energy are used as the convergence condition.

When using the arc-length method, the load increment cannot be decided by the user and is instead 

decided by the arc-length restraint condition. Thus, it may be difficult to achieve an accurate solution 

based on the desired loading criteria. As a aresult, the arc-length method should be applied 

specifically to problems in which unstable equilibrium is involved and there are no additional benefits 

for solving typical nonlinear problems.

                                                                   
7 Crisfield, M.A., “An arc-length method including line searches and accelerations,” International Journal for 

Numerical Methods in Engineering, Vol. 19, Issue 9, pp 1269-1289, 1983
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P-Delta Effect

In cases where the structure is subject to both lateral and axial forces, the P-Delta effect is a 

consideration of second order structural motion. To solve for this second order motion, it utilizes the 

numerical solution method applied to buckling problems. First, the static analysis for the given loading 

criteria is completed. Then, the geometric stiffness matrix is constructed based on the element 

stresses. The modified stiffness matrix is used in iterative calculations that are repeated until the given 

conditions are satisfied. The static equilibrium equation used in the iterations is shown below:

g+ =Ku K u f   (5.6.1)

K : Stiffness matrix

gK : Geometric stiffness matrix based on axial stress

u : Displacement

f : Loading vector

Definition of the P-Delta Effect

When a structure experience moment and shear force due to an external force, the tension increases 

the lateral stiffness and the compression decreases the stiffness. 

Figure 5.6.1 shows a structure subject to both tensile and lateral force. In the case where the P-Delta 

effect is not considered, the moment at the top is zero. From top to bottom, the moment follows the 

linear relationship M VL= . In reality, displacement occurs due to the lateral force, and the lateral 

displacement reduces the moment due to tension. Similarly, in cases where the structure is subject to 

both compression and lateral force, the moment increases and the resulting effect can be likeend to a 

reduced lateral stiffness.

Section 6

6.1
Consideration of P-

Delta
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Figure 5.6.1 P-Delta Effect
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1) Cantilever Column

REFERENCE Livesley, R. K., and Chandler
1

ELEMENTS Bar elements

MODEL FILENAME PDelta01.mpb

The figure below shows a cantilever column model. This example serves to verify the P-

Delta effect and how that may change as a result of the loading criteria and the boundary 

conditions.

Material data Elastic modulus 

Poisson’s ratio

E = 2.9x10
7

psi

n = 0.0

(a) Units : lbf, in

1191.5

1

2431.5 298

Δ

100
100 100

1

100

(b) (c)

6.2
P-Delta Verification 

Examples

Figure 6.2.1.1
Structural geometry 
and analysis models
(a) Pure sway, (b) No 
sway, (c) No shear
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Table 6.2.1.1 Comparison of pure sway model result

Table 6.2.1.2 Comparison of no sway model result

Table 6.2.1.3 Comparison of no shear model result

Result Reference midas nGen

Lateral displacement at the top 6.849 6.820

Bending moment at the bottom 9084.0 9062.8

Result Reference midas nGen

Lateral displacement at the top 0.420 0.420

Bending moment at the bottom -102.0 -101.2

Shear force at the bottom -202 -201

Rotational displacement at the top 0.00170 0.00168

Result Reference midas nGen

Lateral displacement at the top 0.00752 0.00751

Bending moment at the bottom 225.2 225.1
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2) 2-Dimensional Portal Frame

REFERENCE Livesley, R. K., and Chandler
1

ELEMENTS Bar elements

MODEL FILENAME PDelta02.mpb

The figure bellow shows a 2-dimensional portal frame. This example serves to verify how 

the P-Delta effect changes as a result of the load location.

Material data Elastic modulus 

Poisson’s ratio

E = 2.9x107 psi

n = 0.0

Units : lbf, in

1

1

(a) (a)

100

50 50 7525

1000 1000

A

B

D

C

A

B

A

B

Figure 6.2.2.1
Structural geometry 
and analysis models
(a) Symmetric load 
case, (b) Eccentric load 
case
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Table 6.2.2.1 Comparison of symmetric load case result

Table 6.2.2.2 Comparison of eccentric load case result

Result
P-Delta effect analysis Conventional analysis

Reference midas nGen Reference midas nGen

Rotation at B 0.09192 0.09179 0.08620 0.08621

Moment at A 4606.6 4588.9 4166.7 4166.5

Moment at B 8254.0 8260.3 8333.3 8333.2

Shear force at A 128.6 128.5 125.0 125.0

Result
P-Delta effect analysis Conventional analysis

Reference midas nGen Reference midas nGen

Lateral 

displacement at B
1.893 1.893 1.385 1.385

Rotation at B 0.1013 0.1014 0.0924 0.0924

  Rotation at C 0.0367 0.0367 0.0369 0.0370

Moment at A 2544.9 2551.2 2455.4 2455.6

Moment at B 6088.6 6183.4 6919.6 6919.2

Moment at C 6153.0 6125.0 5580.4 5580.7

Moment at D 4456.9 4503.5 3794.6 3794.1

Shear force at A 101.4 101.6 93.75 93.75
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Nonlinear Dynamic Response

Analysis

Midas nGen offers the ability to conduct nonlinear time history analysis that incorporates nonlinear 

elastic properties and the analysis is based on implicit time integration.

When computing the static equilibrium equation in nonlinear time history analysis, H H T a- method 

is used to conduct implicit time integration, which is also used in linear time history analysis. A 

modified form of the equilibrium eqation, shown below, is used:

( )1 1 int, 1 , 1 int, ,(1 )n n n ext n n n ext n
H H

t
a a+ + + +¶

é ù é ù+ + + - - + - =ë û ë û¶
Mv Cv f f Cv f f 0        (5.7.1)

In nonlinear time history analysis, the rotation of the mass matrix (due to the geometric nonlinearities) 

is incorporated. The rotationa linertia of the mass matrix is calculated at every iteration based on each 

node’s limited rotation, and the analysis incorporates the inertia due to the change in the mass matrix.

Nonlinear time history analysis uses the nonlinear finie element method discussed in Section 5.5, and 

solves for a convergent solution at each time step. The unbalanced equilibrium equation is expressed 

as shown below, based on Equation 5.7.1:

Section 7

7.1
Implicit Time 

Integration
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( )1 1 1 1 int, 1 , 1 1 int, ,
1 (1 )n n n n n ext n n n n ext n

n H H
t

a a+ + + + + + +
+

¶
é ù é ù= + + + - - + -ë û ë û¶

g M v C v f f C v f f        (5.7.2)

The tangential stiffness matrix can be expressed by applying the temporal difference equation from the 

Newmark method (Equation 5.4.3) to the velocity and acceleration due to unbalanced equilibrium. It

may be solved with respect to the unknown variable of the displacement degree of freedom and can 

be expressed as shown below:

int, 1 , 1
1 1 1

2

(1 )1
(1 ) (1 )

n ext n
n n nH

H Ht t t

a gg
a a

b b b

+ +
+ + ++ ¶ ¶

= + + + + - +
D D D ¶ ¶

f f
A M M C

u u
&            (5.7.3)

Like linear tiem history analysis, 0.05Ha = - is the default value. Furthermore, to ensure unconditional 

stability, the following values are used: (1 2 ) / 2Hg a= - , 2(1 ) / 4Hb a= -

Angular Velocity and Angular Acceleration

When considering geometric nonlinearities in nonlinear time history analysis, the angular velocity and 

angular acceleration must be updated to reflect the effects due to the rotation of the body axis system.

If f represents the axis about which rotation occurs, then the Newmark difference equation in the 

body axis coordinate system is as follows:

1 1 (1 )n n n ntf f f fg g+ +é ù= + D + -ë ûω ω α α                               (5.7.4)

fω , fα : Angular Velocity and Angular Acceleration with respect to f

Using the vector fe (orthogonal to the body axis), the above expression can be modified to be 

expressed with respect to the global coordinate system:

( )1 1 1 (1 )n n n n n nt tf fg g+ + + é ù= D + + D -ë ûω α e e ω α                         (5.7.5)
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The product of the basal vector in Equation 5.7.5 is the same as the incremental rotation matrix that is 

computed with the equation below:

ˆexp( )qD = DC                                         (5.7.6)

q̂D : Skew Symmetric matrix due to incremental rotation

Using the incremental rotation matrix, the rotation increment may be expressed with the Newmark 

method as shown below: 

2 1 2 1

2
n n nt t tb b+ é ùæ ö

D = D +D D +D -ç ÷ê ú
è øë û

θ α C ω α                        (5.7.7)

Equation 5.7.7 may be rearranged with respect to the angular velocity and angular acceleration, and 

then substituted into Equation 5.7.5. The result equations, shown below, update the angular velocity 

and angular acceleration:

1

1

2

1 1
2

1 1 1
1

2

n n n

n n n

t
t

t t

g g g

b b b

b b b

+

+

é ùæ ö æ ö
= D +D - +D -ê úç ÷ ç ÷
D è ø è øë û

é ùæ ö
= D +D + -ê úç ÷
D D è øë û

ω θ C ω α

α θ C ω α

                    (5.7.8)

Damping Effect

Like in linear time history analysis, nonlinear time history analysis incorporates mass-proportional and 

stiffness-proportional damping. In this case, the stiffness matrix is composed similar to Equation 5.4.5. 

In nonlinear time history analysis, the mass matrix used in the construction of the damping matrix is 

the mass matrix that incorporates the rotation effects discussed previously, and the stiffness matrix 

exclusively includes the stiffness matrix composed of material nonlinearities.
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,
e e e e
j j j mat ja b= + +C M K B             (5.7.9)

matK : Stiffness matrix due to material nonlinearities



Section 8. Moving Crane Analysis | 225

ANALYSIS REFERENCE Chapter 5. Algorithm

Moving Crane Analysis

Midas nGen offers the ability to conduct moving crane analysis. This capability outputs the analysis 

results of a crane girder, and is used to reflect the the reaction at the supports due to the static crane 

moving load when the structure is being constructed. The principal capabilities are as follows:

• Computation of the impact due to sagging, internal force, support reactions

• Computation of maximum/minimum displacement, internal force, and support reactions due to the 

computed impact and crane load

Dynamic analysis for structures computes the response due to loads caused by a moving crane. Thus, 

the analysis incorporates the crane movement and calculates maximum and minimum values. The 

results are output as moving analysis results.

The moving analysis in midas nGen does not analyze the impact on the entire structure, but models 

the selected craine girder and calculates the girder’s axial force, displacement of the nodes within the 

span, and the support reactions. The analysis of crane load on the entire structure is incorporated by 

transforming the support reactions into nodal loads.

The results are output after being categorized based on the location of the lifting load or the existence 

of the load. A typical crane moves by using two crane girders as rails and the lifting load acts between 

the two crane girders. The loading locations based on the crane’s moving direction are estimated with 

respect to the crane girder’s nodes, and thus the number of nodes must be appropriately defined. The 

lifting load between the two girders must experience the maximum value, and thus the software 

considers the location that is as close as possible to each of the crane girders. Furthermore, for proper 

Section 8

8.1
Moving Crane 

Analysis
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combination with earthquake loads, the situation in which lifting loads do not occur is also considered.

Midas nGen will also create loads to reflect effects due to the lateral movement of the lifting load or 

crane’s operation status. The results of the moving crane analysis can be categorized into the 

following six types.

► Max. Crane Load(Max) 

The maximum value that occurs as a result of the lifting load located closest to the selected girder

► Max. Crane Load(Min) 

The minimum value that occurs as a result of the lifting load located closest to the selected girder ►

Min. Crane Load(Max) 

The maximum value that occurs as a result of the lifting load located closest to the opposite girder ►

Min. Crane Load(Min) 

The minimum value that occurs as a result of the lifting load located closest to the opposite girder

► Empty Crane Load(Max) 

In a situation in which there is no lifting load, the maximum reaction that occurs as a result of the 

trolley being located closest to the selected girder

► Empty Crane Load(Min) 

In a situation in which there is no lifting load, the maximum reaction that occurs as a result of the 

trolley being located closest to the opposite girder

An outline of the analysis procedure for moving cranes is shown below.

1.  Unit loads are exerted on the selected crane girder’s nodes, and the impact analysis is completed.

2. Using the inputs to the moving crane analysis and impact analysis results, the moving analysis is 

conducted using possible crane locations. Maximum and minimum values are computed and the 

nodal displacements, girder forces, and support reactions are also calculated. Other components 

that occur simultaneously with the girder’s internal force and support reactions may be computed for 

structural design purposes.
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3. Using the support reactions, the crane static loads are computed and then the analysis of the entire 

structure can continue.

In mdas Plant, the crane load is simulated as a concentrated load that is repeated at equal distances, 

as shown in Figure 8.2.1. Vertical loads are decided based on the self weight of the crane, trolley, 

hoist, and maximum lifting load. Horizontal or longitudinal forces are computed as a proportion of the 

vertical loads. Horizontal loads represent the loads that occur due to horizontal movement of the 

trolley, and the operational loads are loads that occur when the crane begins or stops moving. 

Operational loads do not apply to all wheels on the crane, but only on the wheels that are in the 

direction of operation.

The vertical loads are always assumed to be in the direction of gravity and thus are in the z-axis 

direction of the global coordinate system. Horizontal loads are orthogonal to the crane’s moving 

direction, and the longitudinal loads are set in the direction of the crane’s movement. Horizontal and 

longitudinal loads may be defined in either positive or negative directions. The following seven load 

combinations are used to calculate internal forces and reactions.

1. Vertical Load

2. Vertical Load + Horizontal Load (Left orthogonal direction to the crane’s movement)

3. Vertical Load + Horizontal Load (Right orthogonal direction to the crane’s movement)

4. Vertical Load + Tractive Force (In the direction of the crane’s movement)

5. Vertical Load + Tractive Force (Opposite to the direction of the crane’s movement)

6. Vertical Load + Braking Force (In the direction of the crane’s movement)

7. Vertical Load + Braking Force (Opposite to the direction of the crane’s movement)

8.2
Crane Movement 

Simulation
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The results from moving crane analysis can be categorized into max. crane and min. crane. The cases 

in which the lift force (including the hoist) is closest to and furthest from the crane girder of interest are 

separated, and the crane girder’s displacement, reaction, and internal force are calculated. The 

closest distance result is called Max. Crane and the furthest distance result is called Min. Crane. Thus, 

the vertical load for Max. Crane and Min. Crane are applied differently. The horizontal loads are 

applied independently of the location of the lift force, and have the same values for all cases. Bracking 

and tractive forces are defined as a proportion of the vertical load. The inputs that define crane loads 

are shown below, and the Max. Crane and Min. Crane can be calculated simply based on the vertical 

load.

Crane Information

Capacity (A) Lifting Load

Crane total weight (B) Crane Self Weight 

Trolly & Hoist weight (C) Weight of the trolley and hoist

Crane span (D) Distance between the crane girders

Hook approach (E)
Smallest distance between the lifting load 

and crane girder

Number of wheel (N) Number of wheels on the crane

Crane Girder

Vertical Load
Horizontal Thrust

Braking Force

Tractive Force
Figure 8.2.1 Simulation of 

Crane Loads
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Factor of horizontal load(F)
Ratio of the horizontal load to the vertical 

load
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Crane Wheel Load

Max. Crane Vertical Load
( ) ( )1

2

B C D EA

N D

+ -æ ö
+ç ÷

è ø

Min. Crane Vertical Load
( )1

2

B C EA

N D

+æ ö
+ç ÷

è ø

Horizontal Load
1

2

A B C
F

N

+ +æ ö
´ç ÷

è ø

The impact analysis in midas nGen expresses the results of unit loads exerted on crane girders. 

Results that are located between the unit load locations are linearly interpolated, and thus a more 

accurate impact line can be calculated with additional unit loads. To calculate the impact, the unit 

loads are applied in three directions in order to reflect the vertical, horizontal, and longitudinal loads of 

the crane. These directions are the x- and y-axes of the element coordinate system, along with the z-

axis of the global coordinate system.

The results for actual crane loads are calculated from the product of the size of the crane load and the 

value of the impact line at the crane location. Figure 8.3.1 shows the calculation for the simply 

supported girder’s impact line for midpoint shear force and maximum value. Using the impact line from 

exerting unit loads, the impact values at the moving crane’s locations are multiplied by the actual 

crane load to obtain the maximum value result. In the case below, the maximum value of 125 is 

obtained by multiplying the crane load of 100 and the impact at the location of the crane’s wheels.

8.3
Impact Line Analysis 

and Moving Analysis 

Results

Figure 8.3.1 Load location 

and result computation of 

crane analysis
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100 100 100 100

0.5

-0.5

Shear force = 100 x (0.125 + 0.25 + 0.375 + 0.5) 
= 125

0.125
0.25

0.375
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1) Moving Crane Analysis

ELEMENTS Beam elements

MODEL FILENAME Crane_01.mpb

Figure 8.4.1 shows a typical crane girder structure. The supports of a crane are modeled 

with column elements. These supports are transformed into simple supports in analysis.

Important aspects in crane girder design include sagging, shear, and moment at the 

span’s midpoint (point B), along with the reaction at the support at point A. These 

results are compared with the exact solution. The crane atop the crane girders are 

assumed to have the concentrated loads shown in the bottom right figure within Figure 

8.4.1. Table 8.4.1 shows the exact solution (through numerical methods) and the results 

of the moving crane analysis. Excluding displacement, all results are the same. In the 

case of displacement, there is a small difference of 1.5%, and this is due to the 

assumption that the impact inbetween the loading locations are linearly interpolated. If 

the number of elements between the spans are increased, then the number of impact lines 

increase and thus a more accurate result may be obtained. The results shown in Table 8.4.1 
uses a model with 8 elements per span.

8.4
Moving Crane 

Analysis Examples

Figure 8.4.1 Crane girder 

structure with crane loads
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A B

P P P P
1 1 1

Units : m4@10.0

X

Z P P P P Left  Beam end Release on DOF X
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Material data Elastic modulus 

Poisson’s ratio

E = 205GPa

n = 0.3

Section 

property

Area

Shear Area

Moment of Inertia

A  = 3886 mm
2

As = 1882 mm
2

Ix = 23591960 mm4

Crane

Capacity(A)

Crane total weight(B)

Trolly & hoist weight(C)

Crane span (D)

Hook approach(E)

Number of wheel(N)

Factor of horizontal load

100 kN

100 kN

10 kN

10 m

1 m

4

0.1

Wheel load

Max. crane vertical

Min. crane vertical

Horizontal

37.25 kN

15.25 kN

2.625

Table 8.4.1 Results of crane moving load analysis at point A and B

Max. Crane Case Crane moving analysis Exact

Vertical reaction at point A(kN) 134.1 134.1

Horizontal reaction at point A(kN) 9.45 9.45

Displacement at point  B (mm) 0.591 0.60

Moment at point B(kN-m) 298 298

Shear at point B(kN) 52.15 52.15

Min. Crane Case Crane moving analysis Exact

Vertical reaction at point A(kN) 54.9 54.9

Horizontal reaction at point A(kN) 9.45 9.45

Displacement at point  B (mm) 0.242 0.246

Moment at point B(kN-m) 122 122

Shear at point B(kN) 21.35 21.35
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Loads

Structural loads that may be applied in midas nGen can be broadly categorized into force, gravitational 

force, displacement, and temperature load. The categories are described in Table 6.1.1.

Type Applicable Nodes/Elements

Nodal force/moment Nodes

Pressure load 2-dimensional elements, 3-dimensional elements

Beam load Beam elements

Gravity All elements with nonzero mass

Specified 

displacement/velocity/acceleration
Nodes

Temperature load Nodes, 1-dimensional elements, 2-dimensional 

elements, 3-dimensional elements

Nodal force/moment

Nodal force/moment is the most basic type of load. The user may specify up to three force components 

and three moment components per node. The directions may be defined based on an arbitrary 

coordinate system.

Pressure load

Pressure loads are distributed loads exerted on an element’s face or edge. Face pressure loads are 

applicable to 2-dimensional or 3-dimensional loads. Edge pressure loads may be applied to 2-

dimensional elements. The load direction can be the axial direction of an arbitrary coordinate system, 

or the orthogonal direction. Figure 6.1.1 shows how the pressure load be applied to various elements.

Section 1

1.1 
Types of Structural 

Loads

Table 6.1.1 Loads that can be 

applied in Midas nGen

Figure 6.1.1 Pressure loads on 

various surfaces and elements



Chapter 6. Load/Constraint

218 | Section 1. Loads

ANALYSIS REFERENCE

Self Weight due to Gravity

Gravity can be used to model a structure’s self-weight or inertial force. It may be applied to any 

elements with mass. In particular, for truss and beam elements, gravity is considered to be a distributed 

force.

Specified Displacement/Velocity/Acceleration

Specified displacement may be applied to a specific node, and this load is used when the final location 

of a node is known. Specified displacement is categorized as a load as it causes strain in the structure, 

but also causes a restraint condition.

Assume that all degrees of freedom for a given problem are contained in the vector Au . Then, it may 

be separated into degrees of freedom with specified displacements and degrees of freedom without such 

displacements, as shown below:

F

A

S

ì ü
=í ý
î þ

u
u

u
                                           (6.1.1)

Fu : Degrees of freedom without specified displacements

Su : Degrees of freedom with specified displacements

Similarly, the stiffness matrix may be decomposed as follows:

FF FS F F

AA A A

SF SS S S

é ùì ü ì ü
= = =í ý í ýê ú
ë ûî þ î þ

K K u f
K u f

K K u f
  (6.1.2)

pressure on edge pressure on surface
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In the above equation, Su is a defined, known quantity, and the second term in the stiffness equation 

does not represent a real quantity. Using Su , the first term may be rearranged and can yield loading due 

to the specified displacement, as shown below:

FF F F FS S= -K u f K u (6.1.3)

In dynamic analysis, specified velocity and acceleration may be exerted on the structure. Specified 

velocity and acceleration are connected to time integration and may be transformed as a specified 

displacement. This transformed displacement condition will be integrated into the analysis using the 

equations shown above.

Temperature Load

Temperature load can be expressed as TD which represents the difference between the final and initial 

temperatures. The thermal expansion coefficient ( )mTα is a function of the material temperature mT , 

and the strain can be expressed as ( )mT T= Dε α . Thus, the initial and final temperatures must be defined 

for each structural member. Table 6.1.2 shows how temperatures may be applied to different nodes and 

element types.

Types Applicable Types

Nodal temperature Nodes

Element temperature Truss, beam, shell, and solid elements

Static Load

In midas nGen, static loads are used in linear/nonlinear static analyses, and may be defined according 

to the aforementioned load types. Loads are added differently for linear and nonlinear analyses.

► Linear static analysis

Linear static analysis is executed in a single step and incorporates all loads. The static load is the total 

load.

Table 6.1.2 Temperature loads 

that may be applied to 

different elements

1.2
Definition of Static and 

Dynamic Loads
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► Nonlinear static analysis

The load added to the analysis is proportional to the load scale 0 1Il£ £ . In nonlinear analysis, the 

total loading vector is defined as follows:

,0( ) (1 ) j
ext I I int I ext

j

l l l= - + åf f f (6.1.5)

Here, j
ex tf represents the external vector due to the j th load. ,0intf represents the internal force at the 

starting point of nonlinear analysis, and is calculated as a sum of the element internal forces at the 

initial point ( e
in tf ).

,0 0 0( , , )e
int int

e

=åf f σ u L (6.1.6)

If the loading scale is 
0 0l = , then the total external force becomes in equilibrium with the initial 

internal forces. If the loading scale is 1Il = , which is in the final stage of the analysis, then the total 

external force becomes the sum of the load combinations.

Dynamic Loads

In midas nGen, dynamic, time-variant loads may be applied in linear or nonlinear time history analysis. 

In time history analysis, the total load vector is a function of time t as shown below:

( ) ( ) j
ext j ext

j

t T t=åf f (6.1.7)

Here, ( )jT t is the j th loading scale. Typically, this can be defined using tabular data, or it may be 

defined by coefficients of a specific function (Equation 6.1.8).

( ) ( ) sin(2 )D t

jT t A C t e f t Pp-= + + (6.1.8)
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Boundary/Restraint Conditions

Restraint conditions can be divided into single-point constraints and multi-point constraints. Single-

point constraints are applied to a single node, and multi-point constraints define specific relationships 

between various nodal degrees of freedom.

Single-point constraint restrains directional components of a specific node and effectively removes the 

corresponding degree of freedom. Single-point constraints are typically applied to nodes that do not 

experience displacement or for enforcing symmetry conditions.

Single-point constraints may also be used to remove degrees of freedom that should not be 

incorporated into the analysis. This method essentially removes singularities in a stiffness matrix, and it 

is important to properly set up the direction of the restraint condition. For example, the figure below 

shows degrees of freedom located at where the two elements meet. Other than a degree of freedom in 

the axial direction, the other degrees of freedom should not be reflected in the analysis. Thus, all other 

directions must be restrained and the corresponding singularities should be removed from the stiffness 

matrix. However, if the coordinate system is defined as an x-y coordinate system as shown in the 

figure, then an appropriate restrain direction cannot be defined. This brings about the need for a new 

nodal displacement coordinate system that is based on the axial direction of the element and the vector 

orthogonal to that axial direction (vector n ). Then, the direction of vector n is restrained and an 

appropriate restraint condition for analysis has been defined.

Section 2

2.1 
Single-Point 

Constraints

Figure 6.2.1 Example of using 

the nodal displacement 

coordinate system
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Multi-point constraints apply restraint conditions by defining linear relationships between various 

nodal degrees of freedom. The typical form is shown below: 

0j jR u =                                                                 (6.2.1)

jR : Coefficient of linear relationship

ju : Constrained degrees of freedom

If there are multiple multi-point constraints, then the relationships may be expressed as matrices, as 

shown below:

M M =R u 0          (6.2.2)

To apply a solution of simultaneous equations to multi-point constraints, the DOF’s ( Mu ) must be 

categorized into independent and dependent DOF’s. When solving the system of equations, the 

dependent DOF’s will be eliminated. First, the degrees of freedom subject to multi-point constraints are 

categorized into independent DOF’s Iu and dependent DOF’s Du .

[ ],I

M M I D

D

ì ü
= =í ý
î þ

u
u R R R

u
                                                   (6.2.3)

Using the equation above, Equation 6.2.2 may be expressed as shown below:

2.2
Multi-Point 

Constraints

x

y

n

Truss 1

Truss 2



I I D D+ =R u R u 0                                                          (6.2.4)

In this equation, if the inverse of DR exists, the relationship between independent and dependent DOF’s 

may be written as follows:

1
D D I I I

-= - =u R R u Gu                                                        (6.2.5)

Using this equation to the system of equations for the entire model, the dependent DOF’s Du may be 

eliminated.

Multi-point constraints may be applied for a wide variety of modeling situations, and some examples 

are given below.

► Modeling of relative movement between two nodes

► Modeling of sliding or hinge joints

► When the number of degrees of freedom per node join different elements

► Application of decomposed loads

► When applying restraint conditions in directions that do not match with the displacement coordinate 

system of that node

Restraints of degrees of freedom in rigid body/interpolation elements are categorized as a type of multi-

point constraint. In reality, it is more convenient to use rigid body/interpolation elements rather than 

multi-point constraints to represent the motion exhibited by these elements.

Midas nGen offers an automatic single-point constraint capability, which automatically finds 

singularities in the stiffness matrix and applies the appropriate restraint condition to remove this 

singularity. If this capability is used, then the 3x3 stiffness matrix based on the nodal displacement or 

rotation is analyzed. The restraint condition is created in the direction where stiffness is nearly zero.

As in Figure 6.2.1, if the automatic single-point constraint is to be used in the truss element model, a 

restraint condition in the direction of vector n (where there is no stiffness) is created automatically. As 

previously explained, it is important to have defined a nodal displacement coordinate system that 

includes the element axial direction and the vector n orthogonal to the axial direction.

2.3
Automatic Single-Point 

Constraint



ANALYSIS REFERENCE Chapter 6. Load/Constraint

Section 1. Loads | 225

Degrees of freedom are constrained according to various constraint conditions applied to them. When 

an analytical solution has been reached, the binding force due to the single or multi-point constraint 

may be calculated following the procedure outlined below. 

Single-point constraint binding forces Sf and multi-point constraint binding forces Mf must satisfy the 

following equilibrium condition:

int ext S M= + +f f f f                                                          (6.2.6)

extf : External loading vector

intf : Internal force vector (
T d

W
Wò B σ )

If the above equation is separated into the independent DOF’s ( I ) and the dependent DOF’s ( D ) and 

assume that single-point and multi-point constraints may not be applied to the same derees of freedom, 

then the equation may be rearranged as:

int, , ,,

int, , ,

I ext I M IS I

D ext D M D

ì ü ì ü ì üì üï ï ï ï ï ï
= + +í ý í ý í ý í ý

ï ï ï ï ï ïî þî þ î þ î þ

f f ff

f f f0
                                            (6.2.7)

Consequently, binding force ,M Df of dependent DOF’s may be expressed as:

, int, ,M D D ext D= -f f f (6.2.8)

Likewise, binding force ,M If due to independent DOF’s satisfies the following relationship when 

Equation 6.2.5 is used:

, ,
T

M I M D= -f G f (6.2.9)

Following this procedure, once the multi-point constraint binding forces are calculated the single-point 

binding forces ,S If
may be calculated using Equation 6.2.7.

2.4
Binding Force

Calculation 



When a singularity occurs in the stiffness matrix, a unique solution does not exist and indicates an error 

in the finite element model. Singularity errors may be classified into single node singularity errors 

(which may be found through a single node) and mechanism singularity errors (which can be found 

through the model stiffness).

Single Node Singularity Error

Single node singularity errors occur when elements are used without a clear understanding of the 

element characteristics. For example, singularity errors may occur if elements without a directional 

stiffness (truss or solid elements) are used or if the stiffness direction of a spring element is only defined 

in a singular direction. To solve such problems, single node constraints must be suitably used to remove 

singularity errors. Single node singularity errors may be discovered for a single node displacement 

without decomposing the stiffness matrix, so the automatic single node constraint capability may be 

used to remove the singularity error.

Mechanism Singularity Error

Mechanism singularity errors occur as a result of connection between two or more nodes. More 

specifically, the error occur often due to improper constraint conditions.

As an example, equilibrium of the above system may be expressed as shown below:

1 1

2 2

u pk k

u pk k

- ì ü ì üé ù
=í ý í ýê ú-ë ûî þ î þ

(6.2.10)
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Figure 6.2.2 Elastic 

connection without 

constraints
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The inverse of the above stiffness matrix does not exist, and when the load is 1 2P P= - , many solutions 

exist. One of the eigenvalues of the stiffness matrix is zero, and the corresponding eigenvectors 

represent motion of the structure that causes zero strain energy. In typical structures, when no 

constraints are enforced, six eigenvalues of zero value are output and this represents rigid-body motion. 

Due to the zero eigenvalues, no unique solution exists and thus we have a mechanism singularity error.

The existence of a mechanism singularity error may be discovered through decomposition of the 

stiffness matrix. When the stiffness matrix is decomposed and one of the diagonal terms is close to zero, 

it is considered to have a singularity error. When a singularity error occurs in the matrix decomposition 

process, the program stops or calculations proceed by adding a small stiffness to the zero diagonal term. 

This latter method brings about the same effect as adding a spring element to the finite element model.


